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Abstract.

Based on the phase velocity and attenuation propagation velocity, a method for performing numerical

dispersion analysis of three-dimensional Laplace-Fourier-domain scalar wave equation is presented. This method is
applied to a 27-point average-derivative optimal scheme and a 27-point finite-element scheme. Within the relative error
of 1%, the 27-point average-derivative optimal scheme requires seven grid points per wavelength and pseudo-wavelength
while the 27-point finite-element scheme requires 23 grid points per wavelength and pseudo-wavelength for equal and
unequal directional sampling intervals. Numerical examples show that the 27-point Laplace-Fourier-domain average-
derivative optimal scheme is more accurate than the 27-point Laplace-Fourier-domain finite-element scheme for the same
computational cost. By using larger directional sampling intervals while maintaining accuracy, the 27-point Laplace-Fourier-
domain average-derivative optimal scheme can greatly reduce the computational cost of three-dimensional Laplace-Fourier-

domain modelling.
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Introduction

Multiscale full waveform inversion (FWI) can extract quantitative
information on the Earth's interior from a simple starting model
(Bunks et al., 1995; Virieux and Operto, 2009). However, this
method fails when the seismic data lack low-frequency
components. To address this issue, Shin and Cha (2009)
proposed the Laplace-Fourier-domain FWI which is equivalent
to the complex-frequency-domain method (Brenders and Pratt,
2007). This approach can recover a long-wavelength velocity
model from the seismic data lacking low-frequency information.
The main idea of this method is to use the low-frequency
components of the damped wavefield. For three-dimensional
Laplace-Fourier-domain FWI, its computational cost is very
high, and therefore it is important to develop efficient Laplace-
Fourier-domain modelling schemes.

Numerical dispersion analysis for three-dimensional Laplace-
Fourier-domain scalar wave equation is the foundation for
developing efficient numerical modelling schemes. Um et al.
(2012) performed three-dimensional Laplace-Fourier-domain
dispersion analysis through numerical experiments. However,
in order to construct efficient schemes based on the optimisation
technique, we need to perform numerical dispersion analysis
for three-dimensional Laplace-Fourier-domain scalar wave
equation through the classical theory of dispersion analysis.
Chen (2014a) developed a method for performing numerical
dispersion analysis for two-dimensional Laplace-Fourier-
domain scalar wave equation. This method is based on the
phase velocity and attenuation propagation velocity. Using
this approach, an optimal scheme is developed which requires
much fewer grid points per wavelength and pseudo-wavelength
in comparison with the classical scheme.
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In this paper, I will generalise the method in Chen (2014a)
and develop a method for performing numerical dispersion
analysis for three-dimensional Laplace-Fourier-domain scalar
wave equation. Due to the presence of the azimuth angle, the
three-dimensional version of the two-dimensional Laplace-
Fourier-domain  dispersion analysis method becomes
complicated. Two 27-point schemes will be considered: one
is the optimal average-derivative scheme; the other is the
finite-element scheme. I choose the 27-point scheme for two
reasons: 1) it has more degrees of freedom, which is
appropriate for Laplace-Fourier-domain modelling; 2) T can
make fair comparisons with a currently used 27-point finite-
element scheme.

First, T will present the two 27-point schemes and discuss
their relationship. This is followed by the optimisation of
coefficients and a numerical dispersion analysis. Numerical
comparisons with the analytical solution are then presented to
demonstrate the theoretical analysis.

Theory and methods

The 3D Laplace-Fourier-domain scalar wave equation can be
written as

*P *P PP (w+is)

0x? + 0)? + 0z2 + V2 ' )

where P is the pressure wavefield; x, y, and z are coordinates of
the media, o is the angular frequency; s is the Laplace damping
constant; i = v/—1; and v( x, y, z) is the velocity.

A 27-point average-derivative scheme for Equation 1 can be
obtained as follows (see Figure 1a):
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where P, ; , =~ P(mAx, IAy, nAz); vy, 1, = V(mAx, [Ay, nAz); m, I,
and » are integer indices in the x, y, and z directions; Ax, Ay, and
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Fig. 1. Stencils of the (a) 27-point and (b) 19-point average-derivative optimal schemes for 3D Laplace-Fourier-domain scalar wave equation.

Table 1. Laplace-Fourier-domain optimisation coefficients for a;, a, B1, B2, Y1, ¥2, ¢, d and e for different r; = ﬁ—; and r, = %—; when Ax=max

{Ax, Ay, Az}.
o o B B2 b2l 72 c d e
r= 0.083357 0.000000 0.083358 0.000000 0.083359 0.000000 0.499969 0.083338 0.000000
:?; i 0.083375 0.000000 0.083357 0.000000 0.083358 0.000000 0.499935 0.083344 0.000000
:?zz 0.061282 0.011042 0.077572 0.002895 0.080267 0.001542 0.499944 0.083342 0.000000
:?z; 0.080729 0.001306 0.081738 0.000803 0.080351 0.001506 0.499972 0.083337 0.000000
:?;; 0.037452 0.022981 0.074811 0.004263 0.072099 0.005619 0.499961 0.083339 0.000000
:?zé 0.030901 0.026307 0.028492 0.027398 0.056631 0.013347 0.499994 0.083334 0.000000
:?ii 0.062409 0.010434 0.072944 0.005197 0.070313 0.006548 0.499993 0.083334 0.000000
:?;; 0.018739 0.032358 0.056363 0.013484 0.035135 0.024090 0.499987 0.083335 0.000000
:?:i 0.002120 0.040691 0.000401 0.041458 0.000904 0.0412208 0.500005 0.083332 0.000000
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Equation 2 is the Laplace-Fourier-domain version of a 27-point
frequency-domain scheme (Chen 20145).

Although a computational scheme is not handled explicitly in
the finite-element method, a numerical scheme can be extracted
from the assembled matrix (Pyun et al., 2011). Pyun etal. (2011)
presented a 27-point finite-element scheme:

Dxx DW Dzz ((U + iS)2 P —o (3)
36Ax2  36A)2  36Az2 vfn,l,n m,ln ,

where

Dy = Pust,1-1,n-1 = 2Pm 1,01 + Prt1,1-1,n1
+4Ppit,i-1,0 — 8P i—1.0 T 4Pm—1,1-1,n + Pms1,1-1, 041
= 2Py 101 2P 11001 T AP, 01 — 8P 101
+ 4Py 1,n—1 + 16Py 1 10 — 32Py 1 5 + 16Py_1,1,s
+ 4Pt 1, n41 — 8P 11 + APt n41 + Pt 141,01
= 2P ist,0-1 + Pt t,n-1 + 4Pt 0410 — 8Pumis 1,0
+ AP 11410 + Pt 51001 — 2P 141041 + Pt 141.041,

Finite-element scheme (6 = 0°; ¢ = 0°)
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Dy = Put,111.0-1 = 2Pn_1,0,n-1 + Pu-1,1-1,n1
+ 4Py 11,0 — 8Pu1,00 + AP 1,110 + Pt 101,041
= 2P, 11001+ 2Pm 11001 T 4Pn 1,01 — 8P 101
+ 4Py 1,01+ 16Py, 1410 — 32Py 1 0 + 16Py 11,
+ 4Py 1m0 — 8Pttt + AP -1 01+ Pt 1401,0-1
= 2Pt tn-1+ Pt i-1,0-1 + 4Pmit iv10 — 8Pt 1n

+4Pui1,-1,0 + Poitistnrt — 2Pmitinet + Porti-1a41,

D.. = Py1,i-1,n+1 — 2Pp_1,1-1,n + Pr—1,1=1,n—1
+ 4Py 1001 — 8Pu—1,00 + APm 1,101 + Pt 011,041
= 2P 141,00 + 2P 101,01 T 4P 1,01 — 8P i 1.n
+ 4Py 1,01+ 16Py 1 ni1 — 32Py 10 + 16Py 1 01
+ 4Py 111,041 — 8P 1,0 + AP i1, 01+ Pr1,1-1,n41
—2Ppsi1 =10 + Pt i=1,n-1 + 4Pt 1041 — 8Pumit,1n

+ APy 1 10—1 + Pogt j+1 041 = 2Pt w10 + Pt 141,01

We can see that when oy = 8, =9, =3, 00 = f, = 7, = 35,

c=1, and d=e=0, Equation 2 becomes Equation 3. Therefore,

Average-derivative scheme (0= 0° ¢=0°)
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Fig.2. Normalised phase velocity of the 27-point finite-element scheme and the 27-point average-derivative optimal scheme for fixed azimuth angle ¢
and different propagation angles 0 when ;=1 and r,=1. The average-derivative scheme is much more accurate than the finite-element scheme for
this case.
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the 27-point average-derivative optimal scheme (Equation 2)
includes the 27-point finite-element scheme (Equation 3) as a
special case.

Consider an attenuating plane wave in the following form

P(k, X, ¥, Z) — poeik(sinBCos ¢ x-+sin 0 sin ¢ y+cos 92), (4)

where Py is the amplitude at x=y=z=0, 0 is the propagation
angle, ¢ is the azimuth angle, and k= k,.+i k;. Here k. = < is the
wavenumber, and k; =3 is the pseudo-wavenumber (Chen
2014a).

Substituting Equation 4 into Equation 2 and assuming a

constant v, we obtain the discrete dispersion relation

(0+is)® A (5)
V2 BAx2’
where
A =2[1 — cos(k sin 0 cos ¢ Ax)|E, + 277
[1 — cos(ksinfsinp Ax/ri) — 1]E,
+ 2r3[cos(k cos O Ax/ry) — 1]E,
B =c+2dA + 4eB + 8fC,

where | = ﬁ—;, r, =4, and

Finite-element scheme (6 = 45°; ¢ = 0°)
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E, = 20y (cos(k sin 0sin ¢ Ax/ry) + cos(k cos 0 Ax/ry))
+ 4oy cos(ksin @ sin ¢ Ax/ry) cos(k cos 6 Ax/r,)
+ (1 — 4oy —4oy),

E, =2 (cos(ksin # cos ¢ Ax) + cos(k cos ! Ax/r,))
+ 43, cos(k sin 6 cos ¢ Ax) cos(k cos 0 Ax/r;)
+ (1 —4p, —4p,),

E. = 2y,(cos(sin 0 cos ¢ Ax) + cos(k sin 0 sin ¢ Ax/ry))
+ 4y, cos(k sin 0 cos ¢ Ax) cos(k sin 0 sin ¢ Ax/ry)
+ (1 =4y —4p),

A = cos(k sin @ cos ¢ Ax) + cos(k sin 0 sin ¢ Ax/r;)
+ cos(kcos 0 Ax/r,),
B = cos(k sin # cos ¢ Ax) cos(k sin @ sin ¢ Ax/r/)

+ cos(k sin f cos ¢ Ax) cos(k cos 0 Ax/r,)
+ cos(k sinfsin ¢ Ax/ry) cos(k cos 0 Ax/r;),

C = cos(k sin 6 cos ¢ Ax) cos(k sin @ sin ¢ Ax/r;)
cos(k cos O Ax/r,).

We can express kAx as

Average-derivative scheme (6= 45°; ¢ =0°)
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1.20 o010
N 1.15 1.0005
< 110
> 1,05 1.0000
1.00
0.95 0.9995
0.15 i 0.15
0.10 0.08 . 0.9990
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Fig. 3. Normalised phase velocity surfaces of the 27-point finite-element scheme and the 27-point average-derivative optimal scheme for fixed
propagation angle 0 and different azimuth angles ¢» when r; = 1 and r, = 1. The average-derivative scheme is much more accurate than the finite-element

scheme for this case.
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2n 2n
kAx = kAx + ikiAx = —+ i 6
+i G, +i— G 6)
where G TA; 18 the number of grid points per wavelength, and
G, = k L 1s the number of grid points per pseudo-wavelength.

Here, I assume that Ax = max { Ax, Ay, Az}. For other cases, similar
analyses can be performed. If Ay=max {Ax, Ay, Az}, ry, 1o, G,
and G, should be defined as 1 =45, r» =4, G, =2, and

Av kA
G = ka’ respectively. If Az= max {Ax, Ay, Az} 1, ryz, G,,
and G; should be defined as ry = £ and r, = £, G, = /2%, and
G, = szz, respectively.
Set

\/%:Fr(GrvGiaea(b)+i-7:i(Gr7Gi797¢)- (7)
where F,(G,,G;,0,¢) and F;(G,,G;,0,¢) are the real and

imaginary parts of \/E, respectively.
From Equations 5 and 7, we can obtain

o 1

v AXJ:V(GHGHO7¢)7 ( )
$ = (GG 0,0) (9)
V_ i\Mry Vi, Vs .

Finite-element scheme (9 = 0% ¢ = 0°)

1.00
0.95
010 0.90
Finite-element scheme (6 = 30°; ¢ = 0°)
1.05
1.10
1.05 1.00
> 1.00
~
- 0.95 0.95
0.90
0.85
0.15 0.90
1.05
1.00
0.95
0.90

From Equations 8 and 9, normalised numerical phase velocity
and numerical attenuation propagation velocity can be obtained
as follows:

v, G
L =F.(G,, G0 10
27'[ (G7G7 7(725)7 ( )
vi G
—=_"Fi(G,, G0 11
v 27_[ ( ) 77¢)7 ( )
where v, = 2 and v; = ¢

The coefficients oy, oo, P1, P2, 71, 72, ¢, d, and e are determined
by minimising the velocity error:

E(cxl,ocz,ﬁl,ﬁz,%hvcvd’e):////

-~ o~ 2
(1 _ Vr(kr7ki,07 ¢7 a17‘x27ﬂl»ﬁ27y17y27c7 da e))
v

~ o~ 2
+ (1 _vi(krakha? ¢§°‘170‘27ﬁ17ﬁ277’1772’cada e)>
v

dk.dkidod o, (12)

1

where k, = L+ and k; = L.
; :

Average-derivative scheme (6= 0°; ¢=0°)
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Fig. 4. Normalised attenuation propagation velocity surfaces of the 27-point finite-element scheme and the 27-point average-derivative optimal scheme
for fixed azimuth angle ¢ and different propagation angles 0 when r;=1 and r,=1. The average-derivative scheme is much more accurate than the

finite-element scheme for this case.
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Finite-element scheme (9 = 45°; ¢ = 0°)
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1.0000
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Fig.5. Normalised attenuation propagation velocity surfaces of the 27-point finite-element scheme and the 27-point average-
derivative optimal scheme for fixed propagation angle 0 and different azimuth angles ¢ when ;=1 and r, = 1. The average-
derivative scheme is much more accurate than the finite-element scheme for this case.
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0. 0.998

Fig. 6. Normalised phase propagation velocity surfaces of the 27-point finite-element scheme and the 27-point average-
derivative optimal scheme for fixed azimuth angle ¢ and different propagation angles 0 when ;=1 and r,=2. The average-
derivative scheme is much more accurate than the finite-element scheme for this case.
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Finite-element scheme (9 = 45°; ¢ = 0°)
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Fig. 7. Normalised phase velocity surfaces of the 27-point finite-element scheme and the 27-point average-derivative optimal
scheme for fixed propagation angle 0 and different azimuth angles ¢ when r; = 1 and r, =2. The average-derivative scheme is much

more accurate than the finite-element scheme for this case.
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Fig. 8. Normalised attenuation propagation velocity surfaces of the 27-point finite-element scheme and the 27-point
average-derivative optimal scheme for fixed azimuth angle ¢ and different propagation angles 0 when ;=1 and r,=2. The
average-derivative scheme is much more accurate than the finite-element scheme for this case.
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The ranges of k., ;, 0, and ¢ are taken as [0, 0.15], [0, 0.15],
[0,3], and [0,5], respectively. The optimisation coefficients for
different | = ﬁ—; and r, = £ when Av=max {Ax, Ay, Az} are
listed in Table 1. We can see that the coefficients oy, o, B1, 2, 71,
and vy, vary with r; and r,, and the changes in coefficients ¢, d,
and e are small. For the two cases where r; =1,7,=1and r; =1,
r,=2, we can see that o, =f,=7,=0 and f = 1=¢=6d=12e _
Therefore, in these two cases, the 27-point scheme (Equation 2)
reduces to a 19-point scheme (see Figure 15). For convenience,
however, Equation 2 will still be called a 27-point scheme in
these two cases with the coefficients for the eight corner points
being zero.

Results
Dispersion analysis

I performed numerical dispersion analysis by using Equations 10
and 11. First, I considered the case where ; = 1 and r, = 1, which
corresponds to the equal directional intervals Ax=Ay=Az.
Figure 2 shows normalised phase velocity surfaces of the 27-
point finite-element scheme and the 27-point average-derivative
optimal scheme for fixed azimuth angle ¢ and different
propagation angles 0 when ;=1 and r,=1. For the 27-point
finite-element scheme, the errors increase from 0=0° to 0 =30°.
This is probably because the finite-element scheme inherits the
dispersion features of un-optimised schemes. Due to the
complementary property of the trigonometrical functions, the
errors for 0=30° and 0=60° are the same. For the 27-point
average-derivative optimal scheme, the errors are within 1%.
Figure 3 shows normalised phase velocity surfaces ofthe 27-point
finite-element scheme and the 27-point average-derivative

Finite-element scheme (6 = 45°; ¢ = 0°)

1.02
1.00
0.98
0.96
0.94
0.92

0.95

0.90

optimal scheme for fixed propagation angle 0 and different
azimuth angles ¢ when ;=1 and »,=1. In this case, both
schemes show symmetry with respect to the azimuth angle.
However, the 27-point finite-element scheme exhibits large
errors because it is an un-optimised scheme.

Figure 4 displays normalised attenuation propagation
velocity surfaces of the 27-point finite-element scheme and the
27-point average-derivative optimal scheme for fixed azimuth
angle ¢ and different propagation angles  whenr;=1andr, = 1.
We can see that the surfaces in Figures 4 and 5 have quite
different shapes from those in Figures 2 and 3. However, with
respect to the errors, the same conclusion can be drawn.

Figures 69 show the surfaces for the case where »; =1 and
r,=2. For both the 27-point finite-element scheme and the
27-point average-derivative optimal scheme, the errors are
slightly smaller than that in the case where ;=1 and r,=1
due to smaller Az.

From Figures 2-9, we can conclude that within the relative
error of 1%, the 27-point finite-element scheme (Equation 3)
requires 23 grid points per wavelength and pseudo-
wavelength, while the 27-point average-derivative optimal
scheme (Equation 2) requires seven grid points per wavelength
and pseudo-wavelength for both equal and unequal directional
sampling intervals.

Numerical experiments

Numerical experiments were performed to verify the theoretical
analysis on the 27-point finite-element scheme (Equation 3) and
the 27-point average-derivative optimal scheme (Equation 2).
I considered a homogeneous velocity model with a velocity of
3500 m/s (Figure 10a). Horizontal and vertical distances are

Average-derivative scheme (6 = 45° ¢ =0°)
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Fig. 9. Normalised attenuation propagation velocity surfaces of the 27-point finite-element scheme and the 27-point
average-derivative optimal scheme for fixed propagation angle 0 and different azimuth angles ¢ when r; =1 and r, =2. The
average-derivative scheme is much more accurate than the finite-element scheme for this case.
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Fig. 10. (a) The homogeneous model. * represents the source. V represents
the receiver. (b) Laplace-Fourier-domain wavefields computed with the
analytical method, the 27-point finite-element scheme, and the 27-point
average-derivative optimal scheme. (¢) The corresponding relative errors.
The result for the average-derivative scheme is in good agreement with the
analytical result, while the result for the finite-element scheme shows
amplitude errors.

x=4km,y=4km, andz=2 km, respectively. A temporal impulse
is placed at the centre of the model as a source. The receivers are
placed at a depth of 500 m. The angular frequency  is taken to be
10mt/s. The Laplace damping constant s is taken to be S5m/s.
Horizontal sampling intervals are Ax=Ay=100m. Vertical
sampling interval is taken as Az=Ax/2=50m. For this ratio of

directional sampling intervals, the optimisation coefficients of
the 27-point average-derivative optimal scheme (Equation 2) are
o1 =0.083375, 2,=0.000000, f(;=0.083357, [5,=0.000000,
71=0.083358, 7,=0.000000, ¢=0.499935, 4=0.083344, and
e=0.000000 (Table 1).

In this example, analytical solution is available to make
comparisons with numerical solutions:

o
PWLLwJ%:fw{w “ﬁ, (13)
r \%

where

=\ =50 + = 30) + (2 — 20)2,

where (xg, Vo, zo) is the source position.
In numerical comparisons, the following relative error of
Laplace-domain wavefield is used

We — Wy

RE = , (14)

Wa

where w, and w, are the calculated wavefield and the analytical
wavefield, respectively.

Figure 10b shows the normalised Laplace-Fourier-domain
seismograms (real part) computed with the analytical formula
(Equation 13), the 27-point finite-element scheme (Equation 3)
and the 27-point average-derivative optimal scheme (Equation 2).
Figure 10c shows the corresponding relative errors of the
27-point finite-element scheme (Equation 3) and the 27-point
average-derivative optimal scheme (Equation 2). The result
computed with the 27-point average-derivative optimal
scheme (Equation 2) is in good agreement with the analytical
result. For the result computed with the 27-point finite-element
scheme (Equation 3), there are amplitude errors which become
larger as the offset increases because the scheme's dispersion
errors become larger as the propagation angle increases. The
computational cost is the same for these two 27-point schemes,
which indicates the superiority of the 27-point Laplace-Fourier-
domain average-derivative optimal scheme to the 27-point
Laplace-Fourier-domain finite-element scheme.

Discussion

By reducing the required number of grid points per wavelength and
pseudo-wavelength by a factor of approximately three, the 27-point
average-derivative optimal scheme can accommodate a sampling
interval approximately three times larger in comparison with
the 27-point finite-element scheme. Therefore, compared to the
27-point finite-element scheme, the 27-point average-derivative
optimal scheme can achieve computational efficiency
improvement by at least a factor of 27. This is very important
for modelling and FWI based on the 3D Laplace-Fourier-domain
scalar wave equation. However, the 27-point average-derivative
optimal scheme still requires seven grid points per wavelength
and pseudo-wavelength. More accurate schemes should be further
developed. The purpose of this paper is just to provide such a
theoretical framework for Laplace-Fourier-domain dispersion
analysis to develop schemes of high accuracy. I only considered
a homogeneous medium to confirm the results of dispersion
analysis. Numerical experiments with more complex media and
possible applications to real data remain to be done. But these
aspects are beyond the scope of this paper.

Conclusions

A method for performing numerical dispersion analysis for
3D Laplace-Fourier-domain scalar wave equation has been



Dispersion analysis for 3D L-F-domain equation

Exploration Geophysics 167

developed. Based on this method and the optimisation technique,
a 27-point average-derivative optimal scheme has been derived.
Compared to the 27-point finite-element scheme, the 27-point
average-derivative optimal scheme reduces the number of grid
points per wavelength and pseudo-wavelength from 23 to 7
for both equal and unequal directional sampling intervals.
Comparisons with the analytical solution for a homogenous
model demonstrate that the 27-point Laplace-Fourier-domain
average-derivative is superior to the 27-point Laplace-Fourier-
domain finite-element scheme.

Acknowledgements

I would like to thank the anonymous reviewers for valuable suggestions. This
work is supported by the National Natural Science Foundation of China under
grant numbers 41474104 and 41274139.

References

Brenders, A. J., and Pratt, R. G., 2007, Full waveform tomography for
lithospheric imaging: results from a blind test in a realistic crustal
model: Geophysical Journal International, 168, 133—151.

Bunks, C., Salek, F. M., Zaleski, S., and Chavent, G., 1995, Multiscale
seismic waveform inversion: Geophysics, 60, 1457-1473.

Chen, J.-B., 2014a, Laplace-Fourier-domain dispersion analysis of an
average derivative optimal scheme for scalar wave equation:
Geophysical Journal International, 197, 1681-1692.

Chen, J.-B., 2014b, A 27-point scheme for a 3D frequency-domain scalar
wave equation based on an average-derivative method: Geophysical
Prospecting, 62, 258-277.

Pyun, S., Son, W., and Shin, C., 2011, 3D acoustic waveform inversion in
the Laplace domain using an iterative solver: Geophysical Prospecting,
59, 386-399.

Shin, C., and Cha, Y. H., 2009, Waveform inversion in the Laplace-Fourier
domain: Geophysical Journal International, 177, 1067-1079.

Um, E. S., Commer, M., and Newman, G. A., 2012, Iterative finite-difference
solution analysis of acoustic wave equation in the Laplace-Fourier
domain: Geophysics, 77, T29-T36.

Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion
in exploration geophysics: Geophysics, 74, WCC1-WCC26.

www.publish.csiro.au/journals/eg



