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ABSTRACT

Forward modeling is an important foundation of full-
waveform inversion. The rotated optimal nine-point scheme
is an efficient algorithm for frequency-domain 2D scalar wave
equation simulation, but this scheme fails when directional
sampling intervals are different. To overcome the restriction
on directional sampling intervals of the rotated optimal nine-
point scheme, I introduce a new finite-difference algorithm.
Based on an average-derivative technique, this new algorithm
uses a nine-point operator to approximate spatial derivatives
and mass acceleration term. The coefficients can be deter-
mined by minimizing phase-velocity dispersion errors. The
resulting nine-point optimal scheme applies to equal and
unequal directional sampling intervals, and can be regarded
a generalization of the rotated optimal nine-point scheme.
Compared to the classical five-point scheme, the number
of grid points per smallest wavelength is reduced from 13
to less than four by this new nine-point optimal scheme
for equal and unequal directional sampling intervals. Three
numerical examples are presented to demonstrate the theore-
tical analysis. The average-derivative algorithm is also
extended to a 2D viscous scalar wave equation and a 3D sca-
lar wave equation.

INTRODUCTION

Full-waveform inversion (FWI) is a full-wavefield-modeling-
based data-fitting process to extract structural information of sub-
surface from seismograms (Virieux and Operto, 2009). FWI can be
classified into two categories: time-domain FWI (Tarantola, 1984;
Gauthier et al., 1986; Boonyasiriwat et al., 2009) and frequency-
domain FWI (Pratt and Worthington, 1990; Pratt et al., 1998; Pratt,
1999).

An important part of FWI is forward modeling. Compared with
time-domain modeling (Chen, 2009, 2011), frequency-domain
modeling has its advantages: convenient manipulations of a single
frequency, multishot computation based on a direct solver, and easy
implementation of attenuation (Jo et al., 1996). Another advantage
of frequency-domain modeling is that no wavefield-storage issue
occurs when constructing the gradient of FWI in comparison with
the time-domain modeling (Symes, 2007; Clapp, 2009). The main
disadvantage of frequency-domain modeling is that it only can be
done implicitly by solving a set of linear equations. Compared to the
time-domain modeling, this disadvantage is particularly challenging
when it comes to 3D computation. Therefore, reducing the number
of grid points per wavelength is in great demand in particular when
Gaussian elimination techniques are used.
Based on a rotated coordinate system, Jo et al. (1996) developed a

nine-point operator to approximate the Laplacian and the mass
acceleration terms. The coefficients are determined by obtaining
the best normalized phase-velocity dispersion curves. This nine-
point scheme reduces the number of grid points per wavelength
to less than four, and leads to significant reductions of computer
memory and CPU time. Hustedt et al. (2004) and Operto et al.
(2007) generalized the rotated-coordinate method to variable den-
sity case and 3D case, respectively. Min et al. (2000) developed a
25-point optimal scheme for frequency-domain elastic modeling
which does not need rotated coordinate system, but their dispersion
analysis was carried out only for equal directional sampling
intervals.
A disadvantage of the rotated-coordinate method is that equal

directional sampling intervals are required, and in practice direc-
tional sampling intervals usually are different. To overcome the dis-
advantage of the rotated optimal nine-point scheme, a new finite-
difference scheme is introduced in this paper. This new scheme is
based on an average-derivative approach (Chen, 2001, 2008) and
imposes no restriction of equal directional sampling intervals.
The coefficients can be determined by minimizing phase-velocity
dispersion errors. The resulting average-derivative nine-point
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scheme reduces the number of grid points per wavelength
to less than four for equal and unequal directional sampling
intervals.
In the next section, I will present the rotated optimal nine-

point scheme and point out its limitations. This is followed by
the introduction of an average-derivative optimal nine-point
scheme, the optimization of coefficients, and a numerical dispersion
analysis. Numerical examples are then presented to demonstrate the
theoretical analysis. Finally, I will generalize the average-derivative
method to the viscous scalar wave equation and 3D wave
equation.

CLASSICAL NINE-POINT SCHEME AND ITS
LIMITATIONS

Consider the 2D scalar wave equation in the frequency domain

∂2P
∂x2

þ ∂2P
∂z2

þ ω2

v2
P ¼ 0; (1)

where P is the pressure wavefield, ω is circular frequency, and
vðx; yÞ is the velocity. To compare with the result in Jo et al.
(1996), I first consider the 2D case. Later, the 3D case will be dis-
cussed.
A nine-point scheme for equation 1 was introduced by Jo et al.

(1996)

a
Pmþ1;n þ Pm−1;n − 4Pm;n þ Pm;nþ1 þ Pm;n−1

Δ2

þ ð1 − aÞPmþ1;nþ1 þ Pm−1;nþ1 − 4Pm;n þ Pmþ1;n−1 þ Pm−1;n−1

2Δ2

þ ω2

v2m;n
ðcPm;n þ dðPmþ1;n þ Pm−1;n þ Pm;nþ1 þ Pm;n−1Þ

þ eðPmþ1;nþ1 þ Pm−1;nþ1 þ Pmþ1;n−1 þ Pm−1;n−1ÞÞ ¼ 0; (2)

where Pm;n ≈ PðmΔx; nΔzÞ, vm;n ≈ vðmΔx; nΔzÞ, and Δx and
Δz are directional sampling intervals in the x-direction and z-
direction, respectively. Here Δx ¼ Δz ¼ Δ. The constants a, c,
and d are weighted coefficients, and e ¼ 1−c−4d

4
. For details, see

Figure 1a.

Note that a variant of scheme 2 can be obtained

a
Pmþ1;n þ Pm−1;n − 4Pm;n þ Pm;nþ1 þ Pm;n−1

Δ2

þ ð1 − aÞPmþ1;nþ1 þ Pm−1;nþ1 − 4Pm;n þ Pmþ1;n−1 þ Pm−1;n−1

2Δ2

þ ω2

�
c
Pm;n

v2m;n
þ d

�
Pmþ1;n

v2mþ1;n
þ Pm−1;n

v2m−1;n
þ Pm;nþ1

v2m;nþ1

þ Pm;n−1

v2m;n−1

�
:

þ e

�
Pmþ1;nþ1

v2mþ1;nþ1

þ Pm−1;nþ1

v2m−1;nþ1

þ Pmþ1;n−1

v2mþ1;n−1
þ Pm−1;n−1

v2m−1;n−1

��
¼ 0: (3)

According to numerical experiments, schemes 2 and 3 have very
similar performance.
The rotated nine-point optimal scheme 2 with coefficients

(a ¼ 0.5461, c ¼ 0.6248, and d ¼ 0.0938) reduces the number
of grid points per shortest wavelength to less than four, and results
in remarkable reductions of computer storage and CPU time. How-
ever, this scheme has a requirement of Δx ¼ Δz, which is not al-
ways fulfilled. For example, the horizontal and vertical sampling
intervals of the Marmousi model are dx ¼ 12:5 m and dz ¼
4 m, respectively. For such a model, the rotated nine-point optimal
scheme 2 fails. Now I try to develop a generalization of scheme 2.
The generalization is required to be also valid for Δx ≠ Δz. A nat-
ural guess for this generalization is

a

�
Pmþ1;n − 2Pm;n þ Pm−1;n

Δx2
þ Pm;nþ1 − 2Pm;n þ Pm;n−1

Δz2

�

þ ð1 − aÞPmþ1;nþ1 þ Pm−1;nþ1 − 4Pm;n þ Pmþ1;n−1 þ Pm−1;n−1

Δx2 þ Δz2

þ ω2

v2m;n
ðcPm;n þ dðPmþ1;n þ Pm−1;n þ Pm;nþ1 þ Pm;n−1Þ

þ eðPmþ1;nþ1 þ Pm−1;nþ1 þ Pmþ1;n−1 þ Pm−1;n−1ÞÞ ¼ 0: (4)

Unfortunately, however, scheme 4 is wrong because the second
term on the left side of scheme 4 is not an approximation of the
Laplacian when Δx ≠ Δz.
In fact, using Taylor expansion, one can obtain

Pmþ1;nþ1 þ Pm−1;nþ1 − 4Pm;n þ Pmþ1;n−1 þ Pm−1;n−1

Δx2 þ Δz2

¼ 2Δx2

Δx2 þ Δz2
∂2P
∂x2

ðm; nÞ þ 2Δz2

Δx2 þ Δz2
∂2P
∂z2

ðm; nÞ

þOððΔx;ΔzÞ2Þ:

(5)
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Figure 1. Schematic of the rotated optimal
nine-point scheme (a), and the average-derivative
optimal nine-point scheme (b).
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When Δx ≠ Δz, the left side of equation 5 is not an
approximation of the Laplacian ∂2P

∂x2 þ ∂2P
∂z2 at point ðm; nÞ be-

cause 2Δx2
Δx2þΔz2 ≠

2Δz2
Δx2þΔz2.

Therefore, another approach should be developed to achieve
a generalization of scheme 2 to the case which also allows
Δx ≠ Δz.

An average-derivative scheme

Based on an average-derivative technique (Chen, 2001, 2008), I
introduce an average-derivative scheme for equation 1

P̄mþ1;n − 2P̄m;n þ P̄m−1;n

Δx2
þ

~Pm;nþ1 − 2 ~Pm;n þ ~Pm;n−1

Δz2

þ ω2

v2m;n
ðcPm;n þ dðPmþ1;n þ Pm−1;n þ Pm;nþ1 þ Pm;n−1Þ

þ eðPmþ1;nþ1 þ Pm−1;nþ1 þ Pmþ1;n−1 þ Pm−1;n−1ÞÞ ¼ 0;

(6)

where

P̄mþ1;n ¼
1 − α

2
Pmþ1;nþ1 þ αPmþ1;n þ

1 − α

2
Pmþ1;n−1;

P̄m;n ¼
1 − α

2
Pm;nþ1 þ αPm;n þ

1 − α

2
Pm;n−1;

P̄m−1;n ¼
1 − α

2
Pm−1;nþ1 þ αPm−1;n þ

1 − α

2
Pm−1;n−1; (7)

and

~Pm;nþ1 ¼
1 − β

2
Pmþ1;nþ1 þ βPm;nþ1 þ

1 − β

2
Pm−1;nþ1;

~Pm;n ¼
1 − β

2
Pmþ1;n þ βPm;n þ

1 − β

2
Pm−1;n;

~Pm;n−1 ¼
1 − β

2
Pmþ1;n−1 þ βPm;n−1 þ

1 − β

2
Pm−1;n−1; (8)

where α, β, c, and d are weighted coefficients and e ¼ 1−c−4d
4

. For
details, see Figure 1b.
In equation 6, the approximations of the derivatives are weighted

averages of three approximations, and therefore, I call the equation 6
the average-derivative nine-point scheme. The motivation of the
average-derivative method is to provide a family of approximations
to the derivatives from which the optimization approximation
can be chosen to meet our need. Scheme 6 applies to Δx ¼ Δz
and Δx ≠ Δz as well. Furthermore, the average-derivative nine-
point scheme 6 includes the rotated nine-point scheme 2 as a special
case because when Δx ¼ Δz ¼ Δ, and α ¼ β, scheme 6
becomes

~a
Pmþ1;n þ Pm−1;n − 4Pm;n þ Pm;nþ1 þ Pm;n−1

Δ2

þ ð1 − ~aÞPmþ1;nþ1 þ Pm−1;nþ1 − 4Pm;n þ Pmþ1;n−1 þ Pm−1;n−1

2Δ2

þ ω2

v2m;n
ðcPm;n þ dðPmþ1;n þ Pm−1;n þ Pm;nþ1 þ Pm;n−1Þ

þ eðPmþ1;nþ1 þ Pm−1;nþ1 þ Pmþ1;n−1 þ Pm−1;n−1ÞÞ ¼ 0; (9)

where ~a ¼ 2α − 1.
Therefore, the average-derivative nine-point scheme 6 is just the

scheme which achieves the generalization of scheme 2 to the situa-
tion where Δx ¼ Δz and Δx ≠ Δz are allowed. This new scheme
increases the flexibility of scheme 2, and one can directly deals with
a velocity model without the requirement of Δx ¼ Δz.
In addition, the average-derivative nine-point scheme 6 also in-

cludes the classical five-point scheme as a special case because
when α ¼ 1, β ¼ 1, c ¼ 1, and d ¼ 0, scheme 6 becomes

Pmþ1;n − 2Pm;n þ Pm−1;n

Δx2
þ Pm;nþ1 − 2Pm;n þ Pm;n−1

Δz2

þ ω2

v2m;n
Pm;n ¼ 0: (10)

OPTIMIZATION AND DISPERSION ANALYSIS

In this Section, I perform optimization of the coefficients and
show that the average-derivative nine-point scheme 6 retains the
advantages of the rotated nine-point scheme 2.
Substituting Pðx; z;ωÞ ¼ P0e−iðkxxþkzzÞ into equation 6 and as-

suming a constant v, one obtains the discrete dispersion relation

ω2

v2
¼ ½ð1−αÞcosðkzΔzÞþα�ð2−2 cosðkxΔxÞÞþ r2½ð1−βÞcosðkxΔxÞþβ�ð2−2 cosðkzΔzÞÞ

Δx2½cþ2dðcosðkzΔzÞþ cosðkxΔxÞÞþ4e cosðkzΔzÞcosðkxΔxÞ�
;

(11)

where r ¼ Δx
Δz. Here, I first consider the case Δx ≥ Δz.

From equation 11, the normalized phase velocity can be derived
as follows

vph
v

¼

��
ð1 − αÞ cos

�
2π cos θ

rG

�
þ α

�
sin2

�
π sin θ

G

�
þ r2

�
ð1 − βÞ cos

�
2π sin θ

G

�
þ β

�
sin2

�
π cos θ
rG

��1
2

π
G

�
cþ 2d

�
cos

�
2π cos θ

rG

�
þ cos

�
2π sin θ

G

��
þ 4e cos

�
2π cos θ

rG

�
cos

�
2π sin θ

G

��1
2

;

(12)

Table 1. Optimization coefficients for α, β, c, and d for
different Δx

Δz when Δx ≥ Δz.

α β c d

Δx
Δz ¼ 1 0.79439418 0.79439295 0.63482698 0.09129325
Δx
Δz ¼ 1.5 0.65838767 0.86350605 0.63737738 0.09065565
Δx
Δz ¼ 2 0.47368041 0.88433462 0.63610225 0.09097443
Δx
Δz ¼ 2.5 0.93518516 0.78323578 0.63575594 0.09106101
Δx
Δz ¼ 3 0.87450770 0.79811153 0.63571545 0.09107113
Δx
Δz ¼ 3.5 0.88428729 0.80056069 0.63575353 0.09106161
Δx
Δz ¼ 4 0.86562975 0.80408611 0.63580498 0.09104875
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where Vph is the phase velocity and kx ¼ k sin θ, kz ¼ k cos θ, and
G ¼ 2π

kΔx. When Δx ≠ Δz, the quantity G is defined with respect to
the larger sampling interval. That is why I separate the analysis for
Δx ≥ Δz and Δz > Δx.
The coefficients α, β, c, and d are determined by minimizing the

phase error

Eðα; β; c; dÞ ¼
Z Z �

1 −
Vphðθ; ~k; α; β; c; dÞ

v

�2
d ~kdθ; (13)

where ~k ¼ 1
G.

The ranges of ~k and θ are taken as [0, 0.25] and ½0; π
2
�, respec-

tively. A constrained nonlinear optimization program fmincon in
MATLAB is used to determine the optimization coefficients. The
optimization coefficients for different r ¼ Δx

Δz are listed in Table 1.
One can see that the coefficients α and β varies with Δx

Δz, and the
changes in coefficients c and d are small.
If Δz > Δx, the discrete dispersion relation becomes

ω2

v2
¼ r2½ð1−αÞcosðkzΔzÞþα�ð2−2 cosðkxΔxÞÞþ ½ð1−βÞcosðkxΔxÞþβ�ð2−2 cosðkzΔzÞÞ

Δz2½cþ2dðcosðkzΔzÞþ cosðkxΔxÞÞþ4e cosðkzΔzÞcosðkxΔxÞ�
;

(14)

where r ¼ Δz
Δx.

From equation 14, the normalized phase velocity can be derived
as follows

vph
v

¼

�
r2
�
ð1 − αÞ cos

�
2π cos θ

G

�
þ α

�
sin2

�
π sin θ
rG

�
þ
�
ð1 − βÞ cos

�
2π sin θ

rG

�
þ β

�
sin2

�
π cos θ

G

��1
2

π
G

�
cþ 2d

�
cos

�
2π cos θ

G

�
þ cos

�
2π sin θ

rG

��
þ 4e cos

�
2π cos θ

G

�
cos

�
2π sin θ

rG

��1
2

;

(15)

where kx ¼ k sin θ, kz ¼ k cos θ, and G ¼ 2π
kΔz.

The optimization coefficients for the case of Δz > Δx are listed
in Table 2. Compared to the case of Δx ≥ Δz, the only change is
that the coefficients α and β are exchanged.

Table 2. Optimization coefficients for α, β, c, and d for
different Δz

Δx when Δx < Δz.

α β c d

Δz
Δx ¼ 1.5 0.86350605 0.65838767 0.63737738 0.09065565
Δz
Δx ¼ 2 0.88433462 0.47368041 0.63610225 0.09097443
Δz
Δx ¼ 2.5 0.78323578 0.93518516 0.63575594 0.09106101
Δz
Δx ¼ 3 0.79811153 0.87450770 0.63571545 0.09107113
Δz
Δx ¼ 3.5 0.80056069 0.88428729 0.63575353 0.09106161
Δz
Δx ¼ 4 0.80408611 0.86562975 0.63580498 0.09104875
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Figure 2. Normalized phase velocity curves of the
five-point scheme 10 and the average-derivative
optimal nine-point scheme 6 for different ΔxΔz when
Δx ≥ Δz.
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Now I perform numerical dispersion analysis. Figures 2 and 3
show normalized phase velocity curves of the five-point scheme
10 and the average-derivative optimal nine-point scheme 6 for dif-
ferent Δx

Δz when Δx ≥ Δz. Within the phase error of �%1, the five-
point scheme 10 requires 13 grid points per shortest wavelength,
while the average-derivative optimal nine-point scheme 6 requires
less than four points. Figure 4 shows normalized phase velocity
curves of the average-derivative optimal nine-point scheme 6 for
different Δz

Δx when Δx < Δz. In this case, the same conclusion

can be drawn with respect to the number of grid points per shortest
wavelength.

GENERALIZATION OF SCHEME 6

Due to its flexibility and simplicity, average-derivative method
can be easily extended to the viscous scalar and 3D cases. In this
section, I briefly present the resulting schemes. Detailed discussion
of these schemes is beyond the scope of the present paper.
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Figure 3. Normalized phase velocity curves of the
five-point scheme 10 and the average-derivative
optimal nine-point scheme 6 for different ΔxΔz when
Δx ≥ Δz.
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The viscous scalar case

The 2D viscous scalar wave equation reads

∂
∂x

�
1

ρ

∂P
∂x

�
þ ∂

∂z

�
1

ρ

∂P
∂z

�
þ ω2

κ
P ¼ 0; (16)

where ρðx; zÞ is the density, and κðx; zÞ is the complex bulk modulus
which accounts for attenuation in one of the two ways

κðx; zÞ ¼ ρðx; zÞv2ðx; zÞ
�
1 − i

1

2Q

�
2

; (17)

1

κðx; zÞ ¼
1

ρðx; zÞ
�

1

vðx; zÞ þ
1

πvðx; zÞQLn

����ωr

ω

����þ i
sgnðωÞ

2vðx; zÞQ
�

2

;

(18)

where vðx; tÞ is the real velocity, Q is the attenuation factor, i is the
unit of imaginary numbers, sgn is the sign function, and ωr is a
reference frequency (Operto et al., 2007).

An average-derivative optimal nine-point scheme for equation 16
is

1

Δx2

�
1

ρmþ1
2;n

P̄mþ1;n −
�

1

ρmþ1
2;n

þ 1

ρm−1
2;n

�
P̄m;n þ

1

ρm−1
2;n

P̄m−1;n

�

þ 1

Δz2

�
1

ρm;nþ1
2

~Pm;nþ1 −
�

1

ρm;nþ1
2

þ 1

ρm;n−1
2

�
~Pm;n þ

1

ρm;n−1
2

~Pm;n−1

�

þ ω2

κ2m;n
ðcPm;n þ dðPmþ1;n þ Pm−1;n þ Pm;nþ1 þ Pm;n−1Þ

þ eðPmþ1;nþ1 þ Pm−1;nþ1 þ Pmþ1;n−1 þ Pm−1;n−1ÞÞ ¼ 0; (19)

where

ρmþ1
2
;n ¼

1

2
ðρm;n þ ρmþ1;nÞ;

ρm−1
2
;n ¼

1

2
ðρm−1;n þ ρm;nÞ; ρm;nþ1

2
¼ 1

2
ðρm;n þ ρm;nþ1Þ;

ρm;n−1
2
¼ 1

2
ðρm;n−1 þ ρm;nþ1Þ; (20)

and
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Figure 4. Normalized phase velocity curves of the
average-derivative optimal nine-point scheme 6
for different Δz

Δx when Δx < Δz.
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P̄mþ1;n ¼
1 − α

2
Pmþ1;nþ1 þ αPmþ1;n þ

1 − α

2
Pmþ1;n−1;

P̄m;n ¼
1 − α

2
Pm;nþ1 þ αPm;n þ

1 − α

2
Pm;n−1;

P̄m−1;n ¼
1 − α

2
Pm−1;nþ1 þ αPm−1;n þ

1 − α

2
Pm−1;n−1; (21)

and

~Pm;nþ1 ¼
1 − β

2
Pmþ1;nþ1 þ βPm;nþ1 þ

1 − β

2
Pm−1;nþ1;

~Pm;n ¼
1 − β

2
Pmþ1;n þ βPm;n þ

1 − β

2
Pm−1;n;

~Pm;n−1 ¼
1 − β

2
Pmþ1;n−1 þ βPm;n−1 þ

1 − β

2
Pm−1;n−1: (22)

Here, the coefficients α, β, c, d, and e are the same as in scheme 6.

The 3D case

Consider the 3D scalar wave equation

∂2P
∂x2

þ ∂2P
∂y2

þ ∂2P
∂z2

þ ω2

v2
P ¼ 0: (23)

An average-derivative optimal 27-point scheme for equation 23 can
be obtained as

P̄mþ1;l;n − 2P̄m;l;n þ P̄m−1;l;n

Δx2
þ P̂m;lþ1;n − 2P̂m;l;n þ P̂m;l−1;n

Δy2

þ
~Pm;l;nþ1 − 2 ~Pm;l;n þ ~Pm;l;n−1

Δz2

þ ω2

v2m;l;n

ðcPm;l;n þ dAþ eBþ fCÞ ¼ 0; (24)

where Pm;l;n ≈ PðmΔx; lΔy; nΔzÞ, vm;ln ≈ vðmΔx; lΔy; nΔzÞ, and
Δx, Δy, and Δz are directional sampling intervals in the x-direction,
y-direction, and z-direction, respectively, and

P̄mþ1;l;n ¼ α1ðPmþ1;lþ1;n þ Pmþ1;l;nþ1 þ Pmþ1;l−1;n þ Pmþ1;l;n−1Þ
þ α2ðPmþ1;lþ1;nþ1 þ Pmþ1;l−1;nþ1 þ Pmþ1;lþ1;n−1 þ Pmþ1;l−1;n−1Þ
þ ð1 − 4α1 − 4α2ÞPmþ1;l;n

P̄m;l;n ¼ α1ðPm;lþ1;n þ Pm;l;nþ1 þ Pm;l−1;n þ Pm;l;n−1Þ
þ α2ðPm;lþ1;nþ1 þ Pm;l−1;nþ1 þ Pm;lþ1;n−1 þ Pm;l−1;n−1Þ
þ ð1 − 4α1 − 4α2ÞPm;l;n

P̄m−1;l;n ¼ α1ðPm−1;lþ1;n þ Pm−1;l;nþ1 þ Pm−1;l−1;n þ Pm−1;l;n−1Þ
þ α2ðPm−1;lþ1;nþ1 þ Pm−1;l−1;nþ1 þ Pm−1;lþ1;n−1 þ Pm−1;l−1;n−1Þ
þ ð1 − 4α1 − 4α2ÞPm−1;l;n; (25)

P
̂
m;lþ1;n ¼ β1ðPmþ1;lþ1;n þ Pm;lþ1;nþ1 þ Pm−1;lþ1;n þ Pm;lþ1;n−1Þ

þ β2ðPmþ1;lþ1;nþ1 þ Pmþ1;lþ1;n−1 þ Pm−1;lþ1;nþ1 þ Pm−1;lþ1;n−1Þ
þ ð1 − 4β1 − 4β2ÞPm;lþ1;n

P
̂
m;l;n ¼ β1ðPmþ1;l;n þ Pm;l;nþ1 þ Pm−1;l;n þ Pm;l;n−1Þ

þ β2ðPmþ1;l;nþ1 þ Pmþ1;l;n−1 þ Pm−1;l;nþ1 þ Pm−1;l;n−1Þ
þð1 − 4β1 − 4β2ÞPm;l;n

P
̂
m;l−1;n ¼ β1ðPmþ1;l−1;n þ Pm;l−1;nþ1 þ Pm−1;l−1;n þ Pm;l−1;n−1Þ

þβ2ðPmþ1;l−1;nþ1 þ Pmþ1;l−1;n−1 þ Pm−1;l−1;nþ1 þ Pm−1;l−1;n−1Þ
þð1 − 4β1 − 4β2ÞPm;l−1;n; (26)

~Pm;l;nþ1 ¼ γ1ðPmþ1;l;nþ1 þ Pmlþ1;nþ1 þ Pm−1;l;nþ1 þ Pm;l−1;nþ1Þ
þ γ2ðPmþ1;lþ1;nþ1 þ Pmþ1;l−1;nþ1 þ Pm−1;lþ1;nþ1 þ Pm−1;l−1;nþ1Þ
þ ð1 − 4γ1 − 4γ2ÞPm;l;nþ1;

~Pm;l;n ¼γ1ðPmþ1;l;n þ Pm;lþ1;n þ Pm−1;l;n þ Pm;l−1;nÞ
þ γ2ðPmþ1;lþ1;n þ Pmþ1;l−1;n þ Pm−1;lþ1;n þ Pm−1;l−1;nÞ
þð1 − 4γ1 − 4γ2ÞPm;l;n;

~Pm;l;n−1 ¼ γ1ðPmþ1;l;n−1 þ Pm;lþ1;n−1 þ Pm−1;l;n−1 þ Pm;l−1;n−1Þ
þ γ2ðPmþ1;lþ1;n−1 þ Pmþ1;l−1;n−1 þ Pm−1;lþ1;n−1 þ Pm−1;l−1;n−1Þ
þ ð1 − 4γ1 − 4γ2ÞPm;l;n−1; (27)

and

A ¼ ðPm;lþ1;n þ Pm;l;nþ1 þ Pm;l−1;n þ Pm;l;n−1 þ Pmþ1;l;n þ Pm−1;l;nÞ
B ¼ ðPmþ1;lþ1;n þ Pmþ1;l;nþ1 þ Pmþ1;l−1;n þ Pmþ1;l;n−1

þ Pm−1;lþ1;n þ Pm−1;l;nþ1:

þ Pm−1;l−1;n þ Pm−1;l;n−1 þ Pm;lþ1;nþ1 þ Pm;l−1;nþ1

þ Pm;lþ1;n−1 þ Pm;l−1;n−1Þ
C ¼ ðPmþ1;lþ1;nþ1 þ Pmþ1;l−1;nþ1 þ Pmþ1;lþ1;n−1 þ Pmþ1;l−1;n−1

þ Pm−1;lþ1;nþ1 þ Pm−1;l−1;nþ1 þ Pm−1;lþ1;n−1 þ Pm−1;l−1;n−1Þ: (28)

Here, α1, α2, β1, β2, γ1, γ2, c, d, and e are coefficients which are to
be optimized in the way as in the 2D case, and f ¼ 1−c−6d−12e

8
.

Source Receiver 

Figure 5. Schematic of the homogeneous model.
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NUMERICAL EXAMPLES

In this section, I present three numerical examples to verify the
theoretical analysis on the average-derivative optimal nine-point
scheme 6 and the classical five-point scheme 10.
First, I consider a homogeneous velocity model with a velocity of

3000 m∕s (Figure 5). In this case, analytical solution is available
to make comparisons with numerical solutions. Horizontal and
vertical samplings are nx ¼ 101 and nz ¼ 41, respectively. A Rick-
er wavelet with peak frequency of 25 Hz is placed at the center of
the model as a source, and a receiver is set 25 samples away from

the source horizontally. The maximum frequency used in the com-
putation is 70 Hz. According to the criterion of four grid points per
smallest wavelength, horizontal sampling interval is determined by
dx ¼ 3000∕75∕4 m ≈ 11 m. Vertical sampling interval is taken as
dz ¼ dx∕1.5. For this ratio of directional sampling intervals, the
optimization coefficients of scheme 6 are α ¼ 0.65838767,
β ¼ 0.65838767, c ¼ 0.65838767, and d ¼ 0.65838767.
For the analytical solution, the following formula is used (Alford

et al., 1974)

Pðx; z; tÞ ¼ iπF−1
�
Hð2Þ

0

�
ω

v
r

�
FðfðtÞÞ

�
;

(29)

where F and F−1 are Fourier and inverse
Fourier transformations with respect to time,
respectively, fðtÞ is the Ricker wavelet,
Hð2Þ

0 is the second Hankel function of order zero,
and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðz − z0Þ2

p
. Here ðx0; z0Þ is

the source position.
Figure 6 shows the results computed with the

analytical formula 29, the classical five-point
scheme 10, and the average-derivative optimal
scheme 6. The simulation result with the aver-
age-derivative optimal scheme 6 is in good
agreement with the analytical result while the re-
sult with the classical five-point scheme 10 exhi-
bits errors due to numerical dispersion.
Second, I consider a heterogeneous velocity

model. Figure 7 shows a salt dome velocity
model. The velocity of the salt dome is
4000 m∕s, and the velocity of the overburden
is 3000 m∕s. Horizontal and vertical samplings
are nx ¼ 101 and nz ¼ 81, respectively. A Rick-
er wavelet with peak frequency of 35 Hz is
placed at the tenth level of the model as a source,
and the receivers are set at the top of the model.
The use of lager peak frequency in this example
is to make the advantage of the average-deriva-
tive optimal scheme 6 more evident. Absorbing

boundary conditions with 45° one-way wave equation are used at
the four sides of the model (Clayton and Engquist, 1977). The max-
imum frequency used in the computation, the horizontal and vertical
sampling intervals, and the optimization coefficients are the same as
those used in the homogeneous velocity model.
Figure 8 shows the seismograms computed with the classical

five-point scheme 10, the average-derivative optimal scheme 6,
and a fourth-order time-domain method presented in Alford
et al. (1974). The simulation result with the classical five-point
scheme 10 exhibits large numerical dispersion errors, particularly
on the right side of the model. The result obtained with the aver-
age-derivative optimal nine-point scheme 6 has a much better per-
formance in terms of numerical dispersion, and basically agree with
the result with the fourth-order time-domain method.
Finally, I consider a more realistic model. Figure 9a shows part of

the Marmousi model. The sampling intervals of the Marmousi
model are dx ¼ 12:5 m and dz ¼ 4 m. Horizontal and vertical
samplings are nx ¼ 301 and nz ¼ 301, respectively. For this
ratio of directional sampling intervals, the optimization coefficients
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Figure 6. Seismograms computed with analytical method (a), classical five-point
scheme (b), average-derivative optimal scheme (c) and the superimposed results (d).

Figure 7. The salt dome velocity model.
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of scheme 6 are α ¼ 0.87450770, β ¼ 0.79811153, c ¼
0.63571545, and d ¼ 0.09107113. A Ricker wavelet with peak
frequency of 12.5 Hz is placed at (x ¼ 625 m, z ¼ 36 m) as a
source, and the receivers are set at the depth of 4 m with a spacing

of 12.5 m. Absorbing boundary conditions with 45° one-way wave
equation are used at the four sides of the model.
Seismograms computed with the classical five-point scheme 10

and the average-derivative optimal scheme 6 are shown in Figure 9b

Figure 8. Seismograms computed with the classical five-point
scheme (a), the average-derivative optimal scheme (b), and the
time-domain fourth-order scheme (d).

Figure 9. Part of the Marmousi model (a), and seismograms com-
puted with the classical five-point scheme (b), the average-deriva-
tive optimal scheme (c).
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and 9c, respectively. From the figures, one can see that the result of
scheme 6 is better than that of scheme 10, particularly in the region
highlighted by the dashed rectangles. For the Marmousi model, the
traditional optimal nine-point scheme cannot be applied due to the
fact of dx ≠ dz, but the average-derivative optimal scheme still is
valid due to its flexibility.

CONCLUSIONS

I have presented an average-derivative optimal nine-point
scheme. This new scheme overcomes the disadvantage of the ro-
tated optimal nine-point scheme by removing the requirement of
equal directional sampling intervals. On the other hand, this new
scheme retains the advantage of the rotated optimal nine-point
scheme by reducing the number of grid points per shortest wave-
length to less than four for equal and unequal directional sampling
intervals. The average-derivative optimal nine-point scheme in-
cludes the rotated optimal nine-point scheme as a special case,
and can be regarded as a generalization of the rotated optimal
nine-point scheme to the case of general directional sampling inter-
vals. Three numerical examples demonstrate the theoretical
analysis.
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