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ABSTRACT
Seismic diffracted waves carry valuable information for identifying geological discon-
tinuities. Unfortunately, the diffraction energy is generally too weak, and standard
seismic processing is biased to imaging reflection. In this paper, we present a dynamic
diffraction imaging method with the aim of enhancing diffraction and increasing
the signal-to-noise ratio. The correlation between diffraction amplitudes and their
traveltimes generally exists in two forms, with one form based on the Kirchhoff in-
tegral formulation, and the other on the uniform asymptotic theory. However, the
former will encounter singularities at geometrical shadow boundaries, and the latter
requires the computation of a Fresnel integral. Therefore, neither of these methods is
appropriate for practical applications. Noting the special form of the Fresnel integral,
we propose a least-squares fitting method based on double exponential functions
to study the amplitude function of diffracted waves. The simple form of the fitting
function has no singularities and can accelerate the calculation of diffraction am-
plitude weakening coefficients. By considering both the fitting weakening function
and the polarity reversal property of the diffracted waves, we modify the conven-
tional Kirchhoff imaging conditions and formulate a diffraction imaging formula.
The mechanism of the proposed diffraction imaging procedure is based on the edge
diffractor, instead of the idealized point diffractor. The polarity reversal property can
eliminate the background of strong reflection and enhance the diffraction by same-
phase summation. Moreover,the fitting weakening function of diffraction amplitudes
behaves like an inherent window to optimize the diffraction imaging aperture by its
decaying trend. Synthetic and field data examples reveal that the proposed diffraction
imaging method can meet the requirement of high-resolution imaging, with the edge
diffraction fully reinforced and the strong reflection mostly eliminated.

Key words: Uniform asymptotic theory, Exponential fitting, Kirchhoff diffraction,
Diffraction amplitude, Diffraction imaging.

1 INTRODUCTI ON

Early research about diffraction theory was mainly developed
in the fields of optics and acoustics (Baker and Copson 1939;
Clemmow 1950, 1951; Copson 1950; Morse and Feshbach
1953; Morse and Ingard 1968; Goodman 1968; Longhurst

∗E-mail: yfwang@mail.iggcas.ac.cn

1973). With the demand of high-resolution imaging in the
petroleum industry, interest in seismic imaging gradually
moved toward the use of diffracted/scattered waves. The
significance of using seismic diffraction to detect small-scale
scattering objects such as faults, reflectivity discontinuities
and fractures has been emphasized in many publications
(Krey 1952; Hagedoorn 1954; Kunz 1960). However, the
imaging results of diffraction are generally masked, as the
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diffraction energy is typically one or two orders of magnitude
weaker than that of reflection (Reshef and Landa 2009).
Therefore, several authors have suggested the separation of
diffraction from reflection before seismic diffraction imaging.
The main methods of separating diffraction use the kinematic
differences in the time migrated domain. In the time domain,
the methods include local slant stack (Harlan, Claerbout and
Rocca 1984), plane-wave destruction filters (Taner, Fomel
and Landa 2006; Fomel, Landa and Taner 2006, 2007)
and many other techniques (Bansal and Imhof 2005). In the
migrated dip-angle domain (Reshef and Landa 2009; Landa
and Fomel 2008), a hybrid Radon transform is adopted
for the separation of diffraction (Klokov and Fomel 2012).
Based on a coherent summation of diffracted events along
appropriate trajectories, discussions by many geophysicists
have examined the diffraction imaging methods involving
moveout and amplitude corrections (Landa, Shtivelman and
Gelchinsky 1987; Kanasewich and Phadke 1988; Landa
and Keydar 1998). Similar to the diffraction summation
method, the multi-focusing (Berkovitch et al. 2009) and
common-reflection-surface techniques (Dell and Gajewski
2011; Asgedom, Gelius and Austeng 2011) have been
developed to promote the signal-to-noise ratio of diffraction
imaging results by supergather stacking. By employing
different focusing geometries of the diffraction and reflection,
a focusing–defocusing diffraction imaging approach has been
presented (Khaidukov, Landa and Moser 2004). Several
publications also introduce diffraction enhancing methods
by using appropriate weighting functions to modify the
Kirchhoff migration algorithm (Kozlov, Barasky and Korolev
2004; Zhang 2004; Moser and Howard 2008; Burg and
Verdel 2011).

Stated thus, most of the diffraction imaging methods
focus on removing reflections. Moreover, little work has been
conducted on enhancing diffraction energy using dynamic
characteristics. Diffraction theory can be used to formulate
the dynamic characteristics of diffracted waves. The theory
mainly includes the Kirchhoff diffraction theory (Trorey
1970, 1977; Hilterman 1970, 1975; Berryhill 1977; Gelchin-
sky 1982; Deregowski and Brown 1983) and the geometric
theory of diffraction (Keller 1962, 1985; Felsen 1984). The
Kirchhoff integral formula derived from Green’s function is
perfect, but its boundary conditions are difficult to satisfy.
In the illuminated zone, these boundary conditions require
the total wave fields and the corresponding derivatives,
respectively, to be equal to those of the reflected waves. In the
shadow zone, there are no wave fields. Thus the boundary

conditions of the Kirchhoff theory disobey a well-known
theorem of potential theory (Goodman 1968). The geometric
theory of diffraction extended from Fermat’s principle
assumes the diffraction to be a local effect, and that, away
from the edges, the diffracted field behaves like diffracted
rays (Keller 1962). However, based on the high-frequency
hypothesis, the geometric theory of diffraction fails in the
shadow-boundary neighbourhoods of reflected/transmitted
waves. In these neighbourhoods, the diffracted waves with
their amplitudes reaching the highest values show strong
potential in terms of noise immunity for diffraction imaging
applications. For diffraction problems of the simple geometric
models, the geometric theory of diffraction can give exact
solutions. However, due to limitations in applications and
the complexity in forming solutions for general models,
exact solutions are usually not considered in practical
applications.

Based on the uniform asymptotic theory (Lewis and
Boersma 1969), we provide more insight into the dynamic
characteristics of diffracted waves, especially considering their
properties of amplitude weakening and polarity reversal. In
calculating the diffraction amplitude weakening coefficients,
uniform asymptotic theory requires the computation of a Fres-
nel integral. Because the integration function of the Fresnel
integral is in the form of an exponential, we suggest using
double exponential functions to simplify the diffraction weak-
ening function. To ensure that the fitting values are close
to the true ones, a trust region algorithm is adopted to re-
trieve the coefficients of the double exponential functions.
For removing reflections, we consider the polarity reversal
property of diffracted waves. The Huygens–Fresnel principle
is involved for clarifications. These principles defines the re-
flected waves by the constructive interference of elementary
diffractions. Moreover, the elementary diffractions on both
sides of the stationary points are symmetric. Therefore, if we
reverse the polarity of elementary diffractions on one side of
the stationary point, reflected waves will be eliminated. For
diffracted waves, the situation will be different. When they
cross the primary or secondary shadow boundaries, the po-
larity of diffracted waves will flip (Klem-Musatov and Aizen-
berg 1980; Klem-Musatov 1994; Klem-Musatov et al. 2008).
Instead of the attenuation effect of the conventional Kirch-
hoff imaging method, the polarity reversal in our algorithm
will enhance the imaging energy of diffracted waves. Based on
these dynamic characteristics of diffracted waves, we propose
a dynamic diffraction imaging method that uses the diffraction
weakening function and the polarity reversal property.
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2 M ETHODOLOGY

2.1 Uniform asymptotic theory and the dynamic
characteristics of diffracted waves

In forward modelling in complex geologic structures, uni-
form asymptotic theory is a simple qualitative and quanti-
tative method. It has a definite physical meaning and can be
used to accurately calculate the wave fields both in geometri-
cal illuminated zones and in shadow zones. In this theory, the
weakening function is defined to express the dynamic charac-
teristics of diffracted waves (Landa et al. 1987) and has the
following form:

W(w) =
⎧⎨
⎩

exp(−π iw2/2) F (ζ ),

exp(−π iw2/2) [1 − F (ζ )] ,
(1)

where the first and second terms denote respectively the wave
fields in shadow zones and those in illuminated zones. The
function F (ζ ) represents the Fresnel integral and is given by

F (ζ ) = π−1/2exp(−π/4)
∫ ζ

−∞
exp(iτ 2)dτ , (2)

where

ζ = (πw2/2)
1/2

and w =
[

2
π

ω(tD − tR)
]1/2

, (3)

with tD and tR being respectively the traveltimes of diffracted
and reflective waves, and ω is the angular frequency.

Equation (1) reveals an interesting phenomenon that the
polarities of diffracted waves will reverse when the diffracted
waves cross the geometrical shadow boundary. The weaken-
ing function W(w) is a complex function whose absolute val-
ues represent the amplitude attenuation of diffracted waves.
Numerical calculations indicate that energy distributions of
the diffracted waves are mainly located in the neighbourhood
of the geometrical shadow boundary. In this neighbourhood,
the traveltime difference between diffracted waves and the re-
flected wave at a stationary point is usually several periods of
seismic wavelet.

2.2 Exponential least-squares fitting by means of a trust
region method

A symptotic theory has been used to investigate the charac-
teristics of diffracted waves for a long time. However, little
attention has been paid to adopting them to develop a diffrac-
tion imaging method. The reason is that the diffraction am-
plitude weakening function is in the complex form of Fresnel
integration, which makes the numerical calculation difficult

to implement. Therefore, in applying the uniform asymptotic
theory to diffraction imaging, a key issue is how to construct
a proper weakening function. Observing that the Fresnel in-
tegral function is in the exponential form, we consider em-
ploying exponential functions for a proper curve fitting. The
best-fitting curve to a given set of points is achieved by min-
imizing the sum of the squares of the offsets of the points
from the curve, which allows the offsets to be treated as a
continuous differentiable quantity. The general form of an
exponential distribution function can be written as

f (t) = a exp(b(t + c)) + d, (4)

where the values of the coefficients a, b, c and d may change
continuously. The double exponential distribution function
has the general form

f (t) = (a1 exp(b1(t + c1)) + d1) + (a2 exp(b2(t + c2)) + d2), (5)

where the coefficients ai , bi , ci and di for i = 1, 2 are to be
determined. We consider the weakening function W(w) in the
form of equation (5) with ci and di equal to zero, i.e., f (t) =
a1 exp(b1t) + a2 exp(b2t) + d.

Suppose that the theoretical values of f on each point
are known, then our fitting criterion is trying to minimize
the residual of the computed one and the theoretical one, i.e.,
minimize

J [x] = ‖ f (x) − f̄ ‖2, (6)

where f̄ denotes the true function value, x = [a1, b1, a2, b2]T.
Straightforward calculation shows that the gradient of J

at xk (xk = [ak
1, bk

1, ak
2, bk

2]T) is

gk := gradJ (xk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ J
∂a1

(ak
1)

∂ J
∂b1

(bk
1)

∂ J
∂a2

(ak
2)

∂ J
∂b2

(bk
2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

and the Hessian of J at xk is

Hk = ∇2 J (xk) = ∂

∂xk
(gradJ (xk)). (8)

In solving the minimization problem, two approaches
are usually considered: line search or trust region. In a line
search method, the model function generates a step direc-
tion, and a search is done along that direction to find an
adequate point (step size) that will lead to convergence. In a
trust region method, a generalized sphere in which the model
function will be trusted is updated at each step. If the model
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Figure 1 Amplitude weakening curve of diffracted wave by double exponential functions fitting method.

step lies within the sphere, it will be used to update the itera-
tive point; otherwise, an approximate minimum for the model
function on the boundary of the trust region is used. Gener-
ally, trust region methods are more robust than line search
methods. Moreover, for nonlinear least-squares problems
(sometimes nonlinear ill-posed problems), the trust region
method yields the best convergence results, and the method
is a regularization method, which means that it can supply a
stable globally convergent solution (Wang and Yuan 2005).
Therefore, we consider using the method in the double expo-
nential fitting problem (5).

With the above preparation, a trust region subproblem
for the minimization model (6) at the k-th step can be formu-
lated as follows: minimize over R

4 the function

φk(ξ ) := (gk, ξ ) + 1
2

(Hkξ, ξ ), (9)

subject to ‖ξ‖l2
≤ 	k. (10)

Solving the above ball-constrained minimization problem
gives ξk, and updating xk+1 = xk + ξk provides a new
iteration.

To solve the trust region subproblem (9)–(10), we intro-
duce the Lagrangian multiplier λ and solve an unconstrained
minimization problem:

L(λ, ξ ) = φk(ξ ) + λ(	2
k − ‖ξ‖2

l2
) −→ min . (11)

Straightforward calculation show that the solution satisfies

ξ = ξ (λ) = −(Hk + λI)−1gk. (12)

Moreover, at the k-th step, the Lagrangian parameter λ can
be solved via the nonlinear equation

‖ξk(λ)‖l2
= 	k. (13)

In our calculation, λ is solved through Newton’s root-finding
method, i.e.,

λl+1 = λl − �(λl )
�′(λl )

, l = 0, 1, · · · , (14)
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Table 1 Fitting results of double exponential form.

	Tdr 0 1 2 3 4 5

Theoretical 0.5 0.17 0.11 0.09 0.08 0.07
Fitting 0.5 0.1701 0.1095 0.0908 0.0794 0.0701
Error 0 0.0001 0.0005 0.0008 0.0006 0.0001

where �(λ) = 1
‖ξk(λ)‖l1

− 1
	k

. It can be proved that ‖ξk(λ)‖l2
is

a nonmonotonic function of λ and that {λl}l=1,2,··· is bounded.
Details of the implementation are given in Wang and Yuan
(2005) and Wang (2007).

Using the trust region method, the optimized coefficients

x∗ = [a∗
1, b∗

1, a∗
2, b∗

2]T = [0.3708, −1.8650, 0.1292, −0.1223]T (15)

can be obtained and the fitting curve function of double ex-
ponential functions is given as

|W(	Tdr )| = 0.3708e−1.865	Tdr + 0.1292e−0.1223	Tdr , (16)

where 	Tdr represents the traveltime difference between
diffracted waves and the reflected wave at a stationary point
with a normalization on the half period of the seismic wavelet.

We also considered single exponential least-squares fit-
ting using the above-mentioned trust region method. The re-
sults indicate that the values obtained by the double exponen-
tial fitting formula (16) agree with the ones from the uniform
asymptotic theory to a satisfactory degree. Using our method,
the weakening curve of the amplitude of diffracted waves is
shown in Fig. 1, where the solid line represents the calculated
values, and the rectangles represent the theoretical values. In
Table 1, fitting and theoretical values are listed, with the max-
imum error equal to 0.0008. Comparison of the values shows
that our method can provide a good weakening function W(w)
for diffraction imaging.

2.3 Imaging conditions of dynamic diffraction imaging
method

As is well known, conventional diffraction stack imaging can
image all kinds of waves if the traveltimes and weights are
calculated accurately (Geoltrain and Brac 1993; Moser 1994;
Gray and May 1994; Nichols 1996; Audebert et al. 1997;
Operto, Xu and Lambaré 2000). The general process of imag-
ing continuous reflectors, justified by the diffraction stack
formula, can be physically interpreted as a summation of

weighted amplitudes along Huygens’ isochronous surfaces.
The weighted factors are reflection-biased and will seriously
destroy the energy outside the first Fresnel aperture. There-
fore, the principle of conventional imaging is built on ideal-
ized point diffractors, whose elementary diffraction responses
are tangent to reflection and symmetric about the station-
ary points. Throughout the process of imaging, elementary
diffractions are only mathematical idealizations, destined to
construct reflected waves, and cannot be observed indepen-
dently on a seismic section (Khaidukov et al. 2004).

To strengthen diffraction and simultaneously remove re-
flection, we introduce a diffraction imaging method based
on the dynamic characteristics of edge diffractors. Diffrac-
tion propagation theory reveals that the edge/tip diffraction
will reverse polarity as the diffractors cross the boundary of
the primary/secondary geometrical shadow. If the property of
polarity reversal is included in the conventional diffraction
formulation, reflectors will be completely removed under the
condition of symmetrical imaging apertures. According to the
uniform asymptotic theory, the weakening function indicates
the energy distribution of the diffracted waves beyond the first
Fresnel aperture. Moreover, the decaying trend of the weak-
ening function shows that its behaviour is like choosing an
inherent aperture for diffraction imaging. By considering the
dynamic characteristics of the diffracted waves, we propose a
diffraction imaging method that modifies the Kirchhoff imag-
ing formula with a double exponential fitting function and the
polarity reversal behaviour.

The conventional Kirchhoff diffraction stack formula can
be written as

V(x) =
∫ smax

smin

∫ rmax

rmin

∫ tmax

tmin

U(t, s, r )
A(s, x, r )

δ(t − td(s, x, r ))dtdrds, (17)

where V(x) denotes the image at a subsurface point x; U(r, s, t)

represents the recorded seismic data at a receiver point r and
source point s; and A(s, x, r ) is the ray-theoretical geometrical
spreading term and is positive. The wavefront surface td(s, x, r )

represents the traveltime of elementary diffraction from source
to receivers via an imaging point x.

The dynamic diffraction imaging condition can be written
as the following equation:

V(x) =
∫ smax

smin

∫ rs

rmin

∫ tmax

tmin

U(r, s, t)
A(s, x, r )W+(	Tdr )

× δ(t − td(s, x, r )) dtdrds

+
∫ smax

smin

∫ rmax

rs

∫ tmax

tmin

U(r, s, t)
A(s, x, r )W−(	Tdr )

× δ(t − td(s, x, r )) dtdrds, (18)
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Figure 2 Synthetic zero-offset section of
the vertical tiny fault model.

where W−(	Tdr ) and W+(	Tdr ) denote the weakening func-
tions in illuminated and shadow zones, respectively. Their ab-
solute values are the same as that of W(	Tdr ), with opposite
signs (positive or negative). Here, td represents the traveltime
of the diffracted wave, rs is a stationary point position, and
rmin and rmax are the left-hand and right-hand positions of the
imaging aperture at the stationary point, respectively. These
two locations can be derived from the fitting curve, e.g., Fig.
1, by the difference between their traveltimes and that of a
stationary ray. If the polarity reversal and symmetrical imag-
ing apertures are considered, then the imaging formula (18)
can be revised as follows:

V(x) = 2
∫ smax

smin

∫ rs

rmin

∫ tmax

tmin

U(r, s, t)
A(s, x, r )|W(	Tdr )|

× δ(t − td(s, x, r ))dtdrds. (19)

In the mechanism of conventional Kirchhoff imaging,
diffracted waves with polarity reversal across the shadow
boundary will destructively interfere with each other. In con-
trast, the new diffraction imaging formula (19) will strongly
enhance them by the same-phase summation and weighted
factors of the weakening function. Regarding reflection, po-
larity reversal will eliminate most of its energy. Based on this
distinct imaging principle, we derive a dynamic diffraction
imaging method. Note that we use limited symmetric aper-

tures because of the asymmetric survey nature of practical
applications. As is well known, calculation of reflection trav-
eltimes at the stationary point is the core issue in diffraction
imaging problems. The main techniques include ray tracing
(Khaidukov et al. 2004; Moser and Howard 2008) and re-
flector dips scanning (Tygel et al. 1993; Marfurt et al. 1998;
Fomel 2002). To determine the location of a stationary point
and obtain the corresponding reflection traveltime, we per-
form the following procedure: first, traveltimes from source
to receivers, via imaging point, are calculated using ray trac-
ing to obtain the whole wavefront surface; then, sliding along
the surface, a variable-length window is chosen to scan the
strongest energy band, where the centre of window is con-
sidered as the stationary point, and the corresponding time is
taken as the reflection traveltime.

3 S YNTHETIC DATA EXPERIMENTS

3.1 Vertical tiny fault model

This model is designed to test the focusing ability of our pro-
posed method in dealing with edge diffracted waves. Here a
simple geological model consisting of a vertical tiny fault is
constructed in a constant-velocity background. The fault is
placed at horizontal position of 3000 metres and its verti-
cal displacement is 20 metres. Figure 2 shows a zero-offset
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waves of the vertical tiny fault model.

2.2

2.4

2.6

2.8

D
ep

th
(k

m
)

2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
CMP(km)

-2

-1

0

1

2

Figure 4 Conventional imaging result of
the vertical tiny fault model.

section over this model, synthesized by Kirchhoff modelling
with a seismic dominant wavelength of 200 metres. Two types
of seismic waves can be distinguished. There are reflected
waves from the top and the lower plane interfaces. The right
edge of the top reflector and the left edge of the lower re-
flector create edge diffracted waves. To exclude the effect of

reflected waves on the imaging result, we separate out the
diffracted waves, as shown in Fig. 3. The two edge diffracted
waves are coupled with each other and identifying them may
be difficult. Also, each edge diffraction reverses polarity as
it crosses the geometrical shadow boundary. Figure 4 illus-
trates the result obtained using the conventional Kirchhoff
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Figure 5 Dynamic diffraction imaging re-
sult of the vertical tiny fault model.

migration method. Due to the reversal-phase summation of
edge diffractions, edges are not well focused and imaging arte-
facts appear in the conventional imaging method. The diffrac-
tion imaging result obtained using our proposed method is
shown in Fig. 5. By the same-phase summation of edge diffrac-
tions, two focusing edge points clearly stand out.

By considering both the weakening function and polar-
ity reversal behaviour, the diffraction imaging result in this
geological model demonstrates the attractive feature of our
proposed method in focusing diffraction. In particular, when
dealing with edge diffracted waves, our model’s imaging prin-
ciple offers an obvious advantage.

3.2 Edge and small-scale diffractor model

This model consists of five parallel reflectors and there is a
small diffractor in the middle of each reflector. Figure 6 shows
the zero-offset synthetic section with diffractions originating
from edges and small-scale diffractors. Figure 7 illustrates
the imaging result obtained using the conventional imaging
method. Parallel dipping reflectors are clearly imaged, but
small-scale diffractors are masked in the strong background of
reflection. Figure 8 demonstrates the imaging result obtained
by our proposed diffraction imaging method. In the diffrac-
tion imaging result, both edges and small-scale diffractors are
distinguishable and reflectors are removed. Figure 6 indicates
that, to maintain continuity of the wave fields, edge diffracted

waves will reverse polarity when crossing the primary shadow
boundary. In the shadow zone, the edge diffracted wave keeps
the same polarities as the reflected wave, and it does the op-
posite in the illuminated zone. In imaging diffracted waves,
we need to choose W+(	Tdr ) or W−(	Tdr ) (see equation (18))
in our diffraction imaging algorithm. In our case, we choose
the same sign as that of the left-hand side of the diffracted
waves. Figure 8 clearly illustrates that the apparent polarity
flips from lower-edge diffractors to top-edge diffractors. The
edge and small-scale diffractor model indicates the ability of
our diffraction imaging method to remove reflection and to
image of edges and diffractors.

3.3 Multi-scale geological model

In this 2D geological model, different scales of vertical faults,
edges and diffractors are constructed to test the resolution
ability and to demonstrate the imaging characteristics of our
proposed dynamic diffraction imaging method. We use Kirch-
hoff forward modelling to synthesize the zero-offset seismic
record, with the seismic dominant wavelength equaling 200
metres. The geological model is shown in Fig. 9. In the up-
per part of the model, there are five tiny vertical faults whose
vertical displacements are respectively λ, λ/4, λ/8, λ/16 and
λ/40. In the middle, there are several horizontal discontinu-
ities whose scales and sequences are the same as those of
tiny faults. In the bottom, we buried six diffractors whose
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Figure 7 Conventional imaging result of
the edge and small-scale diffractor model.

scales are respectively λ/30, λ/16, λ/8, λ/4, λ/2 and λ. The
synthetic zero-offset record is shown in Fig. 10, where the en-
ergy of diffracted waves from small-scale geologies is weak.
The imaging result obtained using the conventional imaging
method is shown in Fig. 11, where the macro-scale reflec-
tors are clearly imaged. However, it is hard to classify the

small-scale vertical faults. For the horizontal discontinuities,
the situation is even worse. Using the proposed diffraction
imaging method, we obtain the imaging result shown in Fig.
12. The diffraction imaging result illustrates some obvious
phenomena. First, polarity reversal eliminates most of the re-
flections. Second, for the tiny vertical faults, only up/down
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edges remain, and the waveforms of both edges are cou-
pled. Third, phase characteristics can be employed for the
discrimination of up/down edges. For the geologies with scales
from λ/2 to λ/40, the imaging features are clearly displayed.
For single-edge diffractors, our dynamic diffraction imaging
method returns an event with continuous polarity across the

edge. At offset-fault edges, the proposed method returns an
interference of these events from both edges of the small-scale
faults, which could be helpful in interpreting the displacement
of the fault. For point diffractors, the proposed method re-
turns a single event with a polarity reversal across the point.
These attractive waveform properties of dynamic diffraction
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Figure 10 Synthetic zero-offset section of
the multi-scale geological model.
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Figure 11 Conventional imaging result of
the multi-scale geological model.

imaging are valuable for distinguishing small-scale faults and
diffractors.

The multi-scale geological model demonstrates that re-
moving reflection and enhancing diffraction can improve the

imaging quality of small-scale geologies, even with sizes as
small as λ/40. The special features of waveforms obtained
from dynamic diffraction imaging could also be used to assist
in classifying the geometric shapes of geologies.
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result of the multi-scale geological model.

3.4 2D field data example

Finally, we provide a 2D field data example to show the poten-
tial use of the proposed diffraction imaging method in high-
quality reservoir imaging. Small-scale faults have strong ef-
fects on reservoir flow behaviour; hence their identification
and positioning are critical in designing wells. Because identi-
fying small-scale fractures from reflection imaging results de-
pends on bedding displacements, we can only use the specific
sizes of fractures that the seismic resolution permits. When
throw decreases, geological interpretations will be unreliable.
In general, the magnitudes of reflections have a strong re-
lationship with the displacements of faults. For diffractions,
their magnitudes are mainly controlled by roughness of the
fault surface and by the impedance contrast between the fault
zone and the surroundings.

One shot gather of the field data is displayed in
Fig. 13, with the star(∗) denoting the position of the source.
Strong surface waves (ground rolls) and refracted waves have
been eliminated. Diffracted waves are masked in the strong
reflection background, with a few vague signs in the recorded
seismic data.

Figure 14 illustrates the reflection imaging result, where
diffractors and fractures are not well imaged. We appied the
dynamic diffraction imaging scheme to shot gathers and ob-
tained the imaging result shown in Fig. 15. As is well known,
imaging results of reflections and diffractions have different

ranges of values. Thus, people generally use different gain pa-
rameters to display them. In Figs. 14 and 15, we applied the
same parameters to show the imaging results. The fractures of
different scales are clearly identified at several locations in the
diffraction imaging section (Fig. 15). In addition, small-scale
discontinuities and diffractors are enhanced in the diffraction
imaging result (Fig. 15), whereas they cannot be distinguished
in the reflection imaging result (Fig. 14).

The dynamic diffraction imaging method not only pos-
sesses the ability of high resolution, but also increases the
signal-to-noise ratio of the imaging results to a satisfactory
degree. Field data application once again verifies the validity
of our proposed method.

4 D ISCUSS ION AND C ONCLUSION

Diffraction plays a significant role in seismic data
processing and interpretation. Recognition of scattering ob-
jects such as faults, pinch-outs, sharp changes in reflectiv-
ity and fractures is one of the main goals of geologists,
and usually the information about them is embedded in
diffraction. In essence, a reliable and physically meaning-
ful extraction of high-resolution attributes about oil and
gas reservoirs depends on the quality of diffraction imag-
ing. Today, diffraction imaging receives much more attention
because of its potential use. Geophysicists have developed
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Figure 14 Conventional imaging result of
the field data example with phase-reversal
turned off.

many techniques to tackle the imaging problem of seismic
diffractions, e.g., focusing–defocusing, plane-wave decompo-
sition, common-reflection-surface and multi-focusing. These
methods mainly focus on separating reflections and diffrac-
tions by using the distinct differences in their kinematical
properties.

Based on the uniform asymptotic theory and the dou-
ble exponential fitting technique, we present a dynamic
diffraction imaging method to enhance edge/tip diffraction
events. Conventional imaging algorithms are designed to
stress reflections, where the kernels in the imaging condi-
tion are based on the stationary phase approximation. This
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imaging principle enhances the energy within the first Fres-
nel zone and treats others as noises. However, the proposed
diffraction imaging method performs oppositely. The uniform
asymptotic diffraction theory reveals that edge/tip diffracted
waves may lead to polarity reversal when they cross the
primary/secondary shadow boundary, and their amplitude
weakening functions take the form of a Fresnel integral. There-
fore, we employed these characteristics of diffracted waves to
formulate a diffraction-biased kernel to accomplish the imag-
ing. To accelerate the calculation, a high-precision trust re-
gion algorithm is used to fit the Fresnel integral. It is well-
known that diffractions are usually tangent to reflections,
with their amplitudes typically lower by one or two orders
of magnitude. Common kinematics-based diffraction imaging
methods need to find a domain where the diffraction can be
separated from the reflection. Huygens’ principle illustrates
that reflection events are constructed by the envelope elemen-
tary diffractions, which are tangent to reflection events at
stationary points. Therefore, the proposed diffraction imag-
ing method can remove most of the reflection and realize an
automatic image of the diffraction.

In essence, diffraction is a 3D phenomenon. It illustrates
transverse diffusion of energy from the shadow boundary of
reflection in the direction tangential to the diffracted wave-
front. The change of diffraction amplitudes can be measured
with the distance from the geometrical shadow boundary and

can be calculated by using the diffraction weakening func-
tion. As long as the seismic receiver line crosses the geo-
metrical shadow boundary, the polarity of diffracted waves
will flip, and our diffraction imaging kernel will take ef-
fect. If the seismic receiver lines coincide with the shadow
boundary, the diffraction energy constructed by central rays
will be attenuated. This may be a limitation of the proposed
method, and care should be taken during the 3D interpreta-
tion. However, because these kinds of geological structures
exist in the reflection imaging results, this limitation can
be overcome by combining the interpretation of the reflec-
tion and diffraction imaging results. Therefore, the proposed
dynamic diffraction imaging method can be formulated as
follows:

I. If only the stationary points are found, it will be the case
of a reflected wave. Continuous reflected waves with a
strong energy band and stationary points will be elimi-
nated by polarity reversal behaviour.

II. If both the stationary points and the polarity reversal are
found, it will be the case that diffractions are tangent to
reflections. Hence, polarity reversal will eliminate reflec-
tion and enhance diffraction.

III. If no stationary points and no polarity reversal are
detected, it will be the case that tip/edge diffraction un-
crosses the geometrical shadow boundary, or tip diffrac-
tion crosses the intersection line of even numbers of
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primary shadow boundaries. In this situation, polarity re-
versal will be discarded and the conventional diffraction
stack will be employed.

For the 3D case, the procedure of seeking stationary
points will be performed along different receiver lines, or
common-azimuth receiver lines. If stationary points are found,
then the reflection events will be removed by polarity re-
versal. Hence, in our algorithm, the 3D diffraction imaging
process can be treated as in the 2D situation, except for the
traveltime calculation of elementary diffraction. According to
Keller’s law of diffraction, a diffracted ray and its correspond-
ing traveltime can be determined from Fermat’s principle for
edge/tip diffraction. An edge/tip diffracted ray is defined to
propagate along a stationary path among all the curves from
source to receiver via an edge/tip point. Therefore, in the 3D
diffraction imaging, a point-to-surface ray tracing algorithm
should be employed to calculate diffraction traveltimes. Given
a smooth velocity model, rays emitted from every imaging
point to the survey surface are traced. Then an interpolation
method is used to approximate traveltimes at each pair of
source–receiver points.

Through investigating the dynamic characteristics of
diffracted waves and the conventional Kirchhoff imaging
method, we proposed a diffraction imaging method. This
imaging method employs the phase and amplitude differences
between diffracted and reflected waves. The algorithm is valid
for small-scale geologies and for arbitrary source–receiver
configurations. The proposed diffraction imaging method can
increase the signal-to-noise ratio at diffraction points by the
same-phase summation of diffraction energy. Moreover, the
fitting weakening function behaves as an inherent window to
optimize diffraction imaging apertures. These attractive char-
acteristics mean that our proposed diffraction imaging method
has an improved focusing ability.

Synthetic and field data examples illustrate the efficiency
and reliability of the proposed diffraction imaging method
in imaging small-scale geological bodies (such as sedimentary
hiatuses, faults, unconformity interfaces and fractures). More-
over, the special phase features of diffraction imaging results
can be further employed to extract information on fault edges,
displacement and their relation to reflectors.

Finally, we want to point out that many issues still need
to be investigated regarding the potential use of the dynamic
characteristics of the diffraction imaging algorithms. In our
current algorithm, there is no discrimination between edge
and tip diffraction, and further work is needed to classify
different types of diffractions.
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