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Seismic impedance inversion using l1-norm
regularization and gradient descent methods

Yanfei Wang

Abstract. We consider numerical solution methods for seismic impedance inversion prob-
lems in this paper. The inversion process is ill-posed. To tackle the ill-posedness of the
problem and take the sparsity of the reflectivity function into consideration, an l1 norm reg-
ularization model is established. In computation, a nonmonotone gradient descent method
based on Rayleigh quotient for solving the minimization model is developed. Theoreti-
cal simulations and field data applications are performed to verify the feasibility of our
methods.
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1 Introduction

The reflection seismic exploration becomes an important method of exploration
geophysics. This is because different subsurface layers have different impedance;
reflective waves will appear as the seismic waves propagating to the layer interface.
The purpose of seismic inversion is to speculate the spatial distribution of under-
ground strata structure and physical parameter by using seismic wave propagation
law. A key step for reflectivity inversion is the deconvolution [28]. By deconvolu-
tion, we mean that we attempt to recover the reflectivity function from the seismic
records. So far, the inversion and deconvolution technique has experienced the
development process from direct inversion to model-based inversion, from post-
stack inversion to pre-stack inversion, and from linear inversion to nonlinear in-
version [1, 6, 9–13, 16]. In recent ten years, nonlinear inversion methods have
been utilized effectively. Practice shows that nonlinear inversion is much closer
to real situation than linear inversion. Among these methods, nonlinear optimiza-
tion methods are based on gradient computation, include steepest descent method,
Newton’s method and conjugate gradient method; statistical methods include neu-
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ral network method, genetic algorithm (GA), simulated annealing algorithm (SA)
and random search algorithm [17, 18, 20, 21, 30]. To improve the solution pre-
cision and accelerate convergence speed, many hybrid optimization algorithms
were developed [21, 27]. Roughly speaking, there are three classes of commonly
used methods [7]. The first class of methods is based on local differential charac-
teristics of the objective function, represented by conjugate gradient method and
variable metric method. Since the impedance inversion is quasi-linear, this kind
of iterative methods is feasible, but the results strongly depend on the choice of
the initial model. The second class of methods is randomized algorithm based on
pure random searching, represented by SA. It can obtain global optimal solution,
but has difficulty in determining temperature parameter and needs large amount of
calculation. The last kind of methods is intelligent algorithms which incorporate
randomness and inheritance, represented by GA. One major disadvantage of GA
is that it cannot invert too many parameters, so it is usually used to invert some
characteristic parameters such as interval velocity and reflection depth.

Though a lot of research works have been done, they still cannot completely
satisfy the practical requirements. The results of different methods may lead to
differences and may result in incorrect geological explanation. The reasons may
come from the low quality of seismic data, inaccurate wavelet extraction, and er-
rors between normal incidence assumption and real situation. In addition, two
main influences should be accounted: the first is the band-limited property of seis-
mic data, hence direct inversion can only obtain the mid-frequency component
of impedance model and lack the low-frequency and high-frequency component;
second, in the Hardmard sense, deconvolution and inversion are ill-posed prob-
lems, so the inversion results are highly sensitive to noise. Proper regularization
techniques are necessary.

Nowadays, the most effective way to solve band-limited problem is the con-
strained inversion which can be generalized as the Tikhonov regularization, and
the most effective way to solve ill-posed problem is the regularization methods as-
sisted with proper optimization techniques [21]. We study regularization and op-
timization methods in this paper. Considering the sparsity properties of the reflec-
tivity functions, we develop an equality constrained l1 norm regularization model.
In solving the model, a nonmonotone gradient descent method is developed. Nu-
merical experiments based on synthetic model and filed data are performed.

2 Problem formulation

The seismic impedance usually refers to the characteristic impedance, defined by
I.t/ D �.t/v.t/, where �.t/ refers to the medium density of layers (e.g., deter-
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mined by analyzing well logging data) and v.t/ is the wave velocity. A practical
definition of the characteristic impedance in exploration is using the reflectivity
function r.t/. Since

r.t/ D
I.t C�t/ � I.t/

I.t C�t/C I.t/
;

therefore the reflectivity coefficient of a layer can be expressed as

rj D
IjC1 � Ij

IjC1 C Ij
:

Hence we obtain

IjC1 D Ij

�
1C rj

1 � rj

�
D � � � D I1

jY
kD1

�
1C rk

1 � rk

�
:

Note that jr.t/j < 1, applying logarithm to the above expression and using Taylor
extension, we have that

ln

�
1C x

1 � x

�
� 2:

Therefore

ln

�
IjC1

I1

�
D

jX
kD1

ln

�
1C rk

1 � rk

�
� 2

jX
kD1

rk :

The above formula yields

IjC1 D I1 exp

�
2

jX
kD1

rk

�
: (2.1)

Define �sk D 2rk , a more practical formula of the characteristic impedance is
given by

IjC1 D I1 exp

�
�

jX
kD1

sk

�
: (2.2)

Therefore, to find the impedance, a key problem is to solve for an accurate reflec-
tivity function r .

A convenient expression for the characteristic impedance inversion is the con-
volution model

W r D d; (2.3)
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where r D Œr0; r1; : : : ; rN�1�
T is the reflectivity coefficient vector, d D

Œd0; d1; : : : ; dN�1�
T is the recorded seismic data and W is the wavelet matrix

with length LC 1 expressed by the wavelet function w as

W.NCL/�N D

2
666666666666666666664

w0 0 0 0 � � � 0

w1 w0 0 0 � � � 0

0 w1 w0 0 � � � 0
:::

:::
: : :

: : :
: : :

:::

wL wL�1 � � � w1 w0 0

0 wL wL�1 � � � w1 w0

0 0 wL wL�1 � � � w1
:::

:::
:::

: : :
: : :

:::

0 0 0
: : : wL wL�1

0 0 0 � � � 0 wL

3
777777777777777777775

:

Practically, the data d may also contains different kinds of noises, hence instead
of the exact data d , we have a perturbed version dı : dı D d C ı � n, where n
represents noise.

A naive approach for finding the reflectivity model r is by

r D .W �W /�1W �dı : (2.4)

It is evident that if W � is an approximation to the forward operator W , then the
reflectivity model can be obtained by r D W �dı . This process in seismic explo-
ration is called the migration [5,26]. However, for seismic imaging problems, due
to limited bandwidth and limited acquisition spaces, the seismic images obtained
are blurred, and then direct inversion may cause distortion on the low-frequency
component and the high-frequency component as well.

3 Regularization

As noted above, the numerical inversion for finding r is an ill-posed process.
Therefore incorporating some kind of regularization is necessary. The general
form of the regularization technique is solving a constrained optimization problem

minJ.r/; (3.1)

s.t. W r D dı ; (3.2)

�1 � c.r/ � �2; (3.3)
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where J.r/ denotes an object function, which is a function of r , c.r/ is the con-
straint to the solution r ,�1 and�2 are two constants which specify the bounds of
c.r/. Usually, J.r/ is chosen as the norm of r with different scale. If the parameter
r comes from a smooth function, then J.r/ can be chosen as a smooth function,
otherwise, J.r/ can be nonsmooth.

A conventional regularization method is the Tikhonov’s regularization [8, 14,
15], which is in the form

min krk2l2 ; (3.4)

s.t. W r D dı ; (3.5)

or the equivalent form

min
1

2
kW r � dık

2
l2
C
˛

2
krk2l2 ; (3.6)

where ˛ > 0 is the regularization parameter. But this formulation is not suitable
for sparse seismic signals.

4 Minimal solution in l1 space

It is clear that the reflectivity function may possess spiky and may be sparse. In
this case the above l2 minimization model is not proper description of the problem.
We consider a special model of (3.1)–(3.3), i.e., an l1 minimization model

min krkl1 ; (4.1)

s.t. W r D dı : (4.2)

We remark that the l1 norm minimization is not a new thing. The use of absolute
value error for data fitting had been studied in [4]. However, the l1 norm has a sin-
gular problem when the values of residual vanish. Even if the values of residuals
are not zero, the numerical inversion process goes to failure at very small resid-
ual. Finding suitable methods for solving the nonlinear optimization problem is
desirable.

It is clear that equation (4.1)–(4.2) is equivalent to

min eT r; (4.3)

s.t. W r D dı ; cTi r C "i � 0; (4.4)

where e is a vector with all components 1, ci is some vector and "i 2 R, i D
1; 2; : : : : Then the optimal solution of problem (4.3)–(4.4) is also a solution of
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problem (4.1)–(4.2). Solving (4.3)–(4.4) can use the linear programming method
[24], however, this method is not applicable for large scale problems in seismol-
ogy. Instead, we consider an inequality constrained minimization problem

min krkl1 ; (4.5)

s.t. kW r � dıkl2 � ı (4.6)

and solve the unconstrained minimization problem

min f .r/ WD kW r � dık
2
l2
C ˛krkl1 (4.7)

will yield the solution.
It is evident that the above function f is nondifferentiable at r D 0. To make it

easy to be calculated by computer, we approximate krkl1 by
Pl
iD1

p
.ri ; ri /C �

(� > 0) and l is the length of the vector r . For simplification of notations, we let
�.r/ D . r1p

.r1/T r1C�
; rip

.ri /T riC�
; : : : ; rnp

.rn/T rnC�
/T and

�p.r/ D

0
BBBBBBBB@

�
..r1/T r1C�/p=2

0 0 � � � 0

0
: : : 0

:::
:::

0 � � � �
..ri /T riC�/p=2

::: 0

::: 0
:::

: : :
:::

0 0 � � � 0 �
..rn/T rnC�/p=2

1
CCCCCCCCA
:

Straightforward calculation yields the gradient of f

g.r/ � W T .W r � dı/C ˛�.r/

and the Hessian of f
H.r/ � W TW C ˛�3.r/:

With the gradient information, the gradient-based iterative methods can be applied.

4.1 Gradient descent methods

The gradient method is one of the simplest methods for solving the nonlinear min-
imization problem. Given an iterate point rk , the gradient method chooses the next
iterate point rkC1 in the following form:

rkC1 D rk � 	kgk; (4.8)
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where gk D g.rk/ is the gradient at rk and 	k > 0 is a step-length. The gradient
method has the advantages of being easy to program and suitable for large scale
problems. Different step-lengths 	k give different gradient algorithms. If 	k D 	�

where 	� satisfies
f .rk � 	

�
kgk/ D min

�>0
f .rk � 	gk/; (4.9)

the gradient method is the steepest descent method, which is also called the
Cauchy’s method. However, the steepest descent method, though it uses the “best”
direction and the “best” step-length, turns out to be a very bad method as it nor-
mally converges very slowly, particularly for ill-conditioned problems.

When we apply the gradient method to large scale problems, the most important
issue is which step-length will give a fast convergence rate. Therefore it is vitally
important to find what choices of 	k require less number of iterations to reduce the
gradient norm to a given tolerance.

Recently, nonmonotone gradient methods are much popular, see, e.g., [25, 29].
We recall a well-known such kind of method, developed by Barzilai and Borwein
[2], which lies in the two choices for the step-length 	k:

	BB1
k D

.sk�1; sk�1/

.sk�1; yk�1/
; 	BB2

k D
.sk�1; yk�1/

.yk�1; yk�1/
; (4.10)

where yk�1 D gk � gk�1, sk�1 D rk � rk�1. This method initially designs for
well-posed convex quadratic programming problems. However, it reveals that the
method is also applicable for ill-posed problems and non quadratic programming
problems provided that the deviation of the non quadratic model is not far away
from the quadratic model [22, 25].

Let us consider the quasi-Newton equation of the minimization problem (4.7).
It is easy to deduce that the quasi-Newton equation satisfies

HkC1sk D yk; (4.11)

where Hk D H.rk/ D W TW C ˛�3.rk/. Noting that sk D �	kgk , we have that

	BB10
k D

.gk�1; gk�1/

.gk�1;Hkgk�1/
; 	BB20

k D
.gk�1;Hkgk�1/

.gk�1;H
T
k
Hkgk�1/

: (4.12)

This indicates that the two step-lengths inherit different information from the seis-
mic wavelet. In literature, people usually favor 	BB1

k
or 	BB10

k
. It is readily to

see that 	BB10
k

> 	BB20
k

, i.e., the BB1 step-length is usually larger than BB2 step-

length. However, there is no reason to disregard 	BB2
k

or 	BB20
k

since the method
using BB2 step-length would be efficient if we want to obtain a very accurate
solution of a very large-scale and ill-conditioned problem [29].
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Further, we observe that the inverse of the scalar 	k is the Rayleigh quotient of
Hk orHT

k
Hk at the vector gk�1. This indicates that more choices can be obtained

by combining Rayleigh quotients. To make a trade-off, we develop a new choice
of the step-length by

	
Rayleigh
k

D ˇ1
.gk�1; gk�1/

.gk�1;Hkgk�1/
C ˇ2

.gk�1;Hkgk�1/

.gk�1;H
T
k
Hkgk�1/

; (4.13)

where ˇ1 and ˇ2 are two positive parameters assigned by users.

4.2 Chaotic nature

In recent communications, van den Doel and Ascher notice the chaotic nature of
the nonmonotone gradient methods when they study the Poisson problem

��u.
; t/ D q.s; t/; 
; t 2 .0; 1/

solved by the nonmonotone gradient method [19]. In which, q.
; t/ is known and
subject to homogeneous Dirichlet boundary conditions. The chaotic nature lies in
the sensitivity of the total number of iterations required to achieve a fixed accuracy
to small changes in the initial vector 
0. We give an example of 1d case:

Ax.s/ D

Z
�

a.s � t /x.t/dt D z.s/;

where a.s/ D 1=.
p
2��/ exp.�1=2.s=�/2/, D Œ��=2; �=2� and the true solu-

tion is 2 exp.�6.t � 0:8/2/C exp.�2.t C 0:5/2/.
The initial guess value is chosen as x0Da1e1Ca2e2, where ai 2 Œ�10�5; 10�5�

(i D 1; 2), e1 and e2 are two random orthogonal vectors. The chaotic nature can
be vividly seen from Figure 1.

The chaotic nature indicates that the pure nonmonotone iteration may be not
sufficient to guarantee fast convergence, some safeguard techniques maybe useful.

4.3 Safeguard

From equations (4.1)–(4.2) we learn that their solution is also the solution of the
problem

min kW r � dıkl2 ; (4.14)

s.t. krkl1 � �; � > 0: (4.15)

Therefore, r� solves (4.14) within the feasible set S D ¹r W krkl1 � �º. To main-
tain this property, we apply a projection technique. Note that the set S is bounded
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Figure 1. Chaotic nature of the nonmonotone gradient method.

below and convex, therefore, there exists a projection operator PS W RN ! S

onto S such that
PS .x/ D argminzkx � zk; z 2 S:

The projection is easy to be calculated [3]. Assume that the current iterate rk is
feasible, then the next iteration point can be obtained by

rkC1 D PS .rk � 	kgk/:

4.4 Choosing the regularization parameter

There are many ways to choosing the regularization parameter. Roughly speaking,
the techniques can be classified as either a priori way or a posteriori way. An a
priori choice of the regularization parameter ˛ requires that ˛ > 0 and is fixed.
An a posteriori choice of the regularization parameter usually requires solving
nonlinear equations about ˛ which involves the computations of derivatives of
the solution r˛ . For our gradient descent method, we apply a simple posteriori
technique, i.e., a geometric choice manner,

˛k D ˛0 � 

k�1; 
 2 .0; 1/; (4.16)

where ˛0 > 0 is a preassigned value of regularization parameter.
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4.5 Remarks

The minimization model based on combination of l2 and l1 norm possesses sev-
eral advantages. A simple fact is that the l1 norm is robust to eliminate outliers
and large amplitude anomalies when the necessity of the signal to have minimum
energy is unnecessary. A more general form is the lp-lq model, which can be in
the form

min f .r/ WD kW r � dık
p

lp
C ˛kL.r � r0/k

q

lq
; (4.17)

where p; q > 0 which are specified by users, ˛ > 0 is the regularization parame-
ter, L is the scale operator and r0 is an a priori estimated solution of the original
model. This model relaxes the convexity requirements on the usual models l2-
l2 and l2-l1. Details about implementation of the minimization model are given
in [23].

5 Numerical experiments

5.1 Synthetic simulations

The seismogram is generated by a velocity model with 6 layers, see Figure 2. The
thickness of each layer varies. The velocity parameter in each layer is shown in
Table 5.1. To generate the seismogram, a theoretical Ricker wavelet

w.t/ D .1 � 2�2f 2mt
2/ exp.�.�fmt /

2/

is used to perform a convolution, where fm represents the central frequency. The
seismic records with additive Gaussian random noise is shown in Figure 3. Using
our algorithm, the retrieved reflectivity function is shown in Figures 4 and 5. It is
evident that our algorithm can reduce the noise and retrieve the reflectivity stably.
With the reflectivity function we could rebuild the velocity. The recovered velocity
is shown in Figure 6. Comparison of the true velocity model (Figure 2) with the
recovered velocity (Figure 6) reveals that our algorithm is robust and could be used
for seismic impedance inversion.

layers 1 2 3 4 5 6

V (km � s�1) 2.5 3.0 2.7 3.2 3.8 4.0

Table 1. Parameters of the velocity model.
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Figure 2. Velocity model.
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Figure 3. Seismic data.
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Figure 4. Reflectivity function.
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Figure 5. Comparison of the reflectivity sections with the seismogram sections.
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Figure 6. Recovered velocity.

5.2 Field applications

We apply our method to the field data. The data is taken from the Tarimu Oilfield.
The time sampling is 2 milliseconds and the spacing of traces is 20 meters. Fig-
ure 7 plots the original seismic section. The wavelet function was extracted using
the autocorrelation method. Then we apply our algorithm to the seismic data. The
retrieved reflectivity function is shown in Figure 8. It is illustrated from the in-
version results that the recovered section well represents reflection of layers and
much noise is reduced using our algorithms.

6 Conclusion

We develop an l1-norm constrained regularization model for seismic impedance
inversion problems. Nonmonotone gradient descent methods are used to solve the
regularization problem. Numerical results indicate the feasibility of our algorithm
to practical applications.

We argue that to tackle the ill-posedness of the inversion problem, choosing a
proper regularization parameter ˛ is needed. In this paper, we use a geometric
technique. Clearly this kind of choice is not optimal. It is desirable to find a better
regularization parameter ˛ by a posteriori techniques.

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



836 Y. Wang

0 5 10 15 20 25 30 35 40 45 50

1400

1450

1500

1550

1600

1650

1700

1750

CDP

T
im

e 
(m

s)

Figure 7. Seismic section.
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Figure 8. Recovered reflectivity function.
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