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Fig.3 Regularizing migration results as noise level equal to 0.01 (a) and 0.03 )(b)
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Fig.4 Kirchhoff migration results as noise level equal to 0.01 (a) and 0.03 (b)

6.2 Two-Dimensional Seismic Migration Deconvolution/Inversion Imaging

The second example is a two-dimensional migration problem. We assume that receivers are uniformly
distributed on a line with maximum line length 2501 m. A sampling interval of 40 m in z coordinate is
assumed. An impulsive source wavelet that generates 63 traces of seismic data, the background velocity is
homogeneous with ¢=5000 m/s, and the time sampling interval is dt=1.3 m/s. The spatial resolution of the
migration inversion image is influenced by the migration inversion filter length in the z-coordinate which defines
the number of neighboring depth levels around the given depth. In this simulation, the grid dimensions of the
model is 25011001 with an z gridpoint spacing of dz=40 m, and a z gridpoint spacing of 12.5 m. The three point
scatterers are buried at different depth: 616.5 m, 741.5 m and 866.5 m. We apply our algorithm to the common
shot gather for three single shots in the middle of a recording geometry. For a point scatterer, imaging the earth
had just one point reflector at (0, 20)- This reflector explodes at t = 0. The data at z is a function of locations
2 and travel time ¢ would be an impulsive signal along the hyperbolic trajectory t* = 1/v*((z — z0)2 + (2 —20)%)-
For different depth z underground, the travel time ¢ would be tr = 1/v{/(z — 20)? + (2 — z0)2. The noise level
is assumed to be 0.01. The initialization of the our algorithm is as follows: the initial model is chosen as zero,
the regularization parameter & is set as 0.005. The regularized migration image and the standard migration
image are shown in Figs. 5a and 5b, respectively. It is clear that the regularized migration image possesses
better resolution than that of standard migration image.
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Fig.5 Standard Kirchhoff migration results (a) and regularized migration image (b)

6.3 Three-Dimensional Seismic Migration Deconvolution/Inversion Imaging

We assume that receivers are uniformly distributed on a 21 x 21 orthogonal grid with a sampling interval of
40 m in z coordinate and 20 m in y coordinate. An impulsive source wavelet generates 21 x 21 traces of seismic
data, the background velocity is homogeneous with ¢=5000 m/s, and the time sampling interval is dt = 1.7
ms. The grid dimensions of the model will be 21 x 21 x 10 points with an z or y gridpoint spacing of dz = 40
m, dy = 20 m and a 2 gridpoint spacing of 200 m. One point scatterer and ten point scatters are used for
simulation. Point scatterers are buried at a depth of 1000 ~2800 m. We apply our algorithm to the common
shot gather for a single shot in the middle of a recording geometry. In this test, the regularization parameter is
chosen as o = 0.001. The noise level is assumed to be 0.001.

The standard Kirchhoff migration image and the regularized migration image for one point scatterer
model and ten point scatters model are illustrated in Figs. 6~9, respectively. It is apparent that the regularized
migration images possess better resolution than that of standard migration image.

We find in computation that, under the same condition, our hybrid gradient method yields higher precision
than that of Fletcher-Reeves conjugate gradient method: for one point scatterer model, the norm of the residual
for Fletcher-Reeves algorithm in 45 iteration cycles is 0.0476, the CPU cost is 311.2969 s; the norm of the residual
for our algorithm in 45 iteration cycles is 0.0345, the CPU cost is 248.8750 s. For ten point scatterers model,
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Fig.6 Standard Kirchhoff migration results for one point scatterer model (a) and contour values

of the standard Kirchhoff migration results for one point scatterer model (b)
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Fig.7 Regularized migration results for one point scatterer model (a) and contour values
of the regularized migration results for one point scatterer model (b)
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Fig.8 Standard Kirchhoff migration results for ten point scatterers model (a) and contour values
of the standard Kirchhoff migration results for ten point scatterers model (b)
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Fig.9 Regularized migration results for ten point scatterers model (a) and contour values
of the regularized migration results for ten point scatterers model (b)

the norm of the residual for Fletcher-Reeves algorithm in 45 iteration cycles is 0.0021, the CPU cost is 253.1406 s;
the norm of the residual for our algorithm in 45 iteration cycles is 0.0020, the CPU cost is 248.9063 s.
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6.4 Seismic Deconvolution/Inversion Imaging Using Finite Difference Seismogram

In this section, we show that our algorithm is workable for migration deconvolution and inversion imaging
for synthetic data using a finite-difference (FD) modeling method. The finite difference seismogram is generated
by convolving the source wavelet with a simple 4 layer velocity model and a small channel beneath a layered
medium simulating a point scatterer. We perform a 5 point approximation to the acoustic wave equation, and
additive Gaussian noise with noise level equaling to 0.01 is added to the seismogram. The recorded seismograms
are given in Fig.10. The standard migration image and the regularized migration image are shown in Figs. 11la

and 11b, respectively. Again it shows that the regularized migration deconvolution and inversion yields recovery
with better resolution.
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Fig.10 Seismogram by finite difference
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Fig.11 Standard Kirchhoff migration results (a) and regularized migration results (b)

7 DISCUSSION AND CONCLUSION

Kirchhoff migration is widely used in past decades. However, with the development of the computer and
computational techniques, higher quality migration imaging is spot on schedule. This paper addresses the
regularized migration deconvolution and inversion issues and proposes a hybrid conjugate gradient method.
However, the computational cost of the proposed method is still large. How to accelerating the convergence
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of the gradient method while keeping the stability deserves further investigation. In addition, we choose the
regularization parameter in an a priori way. According to regularization theory, posteriori choice techniques
yield better results. This may be an interesting topic to be studied. Through synthetic simulation, it reveales
that regularized migration deconvolution and inversion generates better results than standard migration (as it
ought to be). This supplies promising prospect for future extensive usage of the method.
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