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A new trust region algorithm for image restoration
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Abstract The image restoration problems play an important role in remote sensing and
astronomical image analysis. One common method for the recovery of a true image from
corrupted or blurred image is the least squares error (LSE) method. But the LSE method
is unstable in practical applications. A popular way to overcome instability is the Tikhonov
regularization. However, difficulties will encounter when adjusting the so-called regular-
ization parameter α. Moreover, how to truncate the iteration at appropriate steps is also
challenging. In this paper we use the trust region method to deal with the image restora-
tion problem, meanwhile, the trust region subproblem is solved by the truncated Lanczos
method and the preconditioned truncated Lanczos method. We also develop a fast algo-
rithm for evaluating the Kronecker matrix-vector product when the matrix is banded. The
trust region method is very stable and robust, and it has the nice property of updating the
trust region automatically. This releases us from tedious finding the regularization param-
eters and truncation levels. Some numerical tests on remotely sensed images are given
to show that the trust region method is promising.
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1 Introduction

In remote sensing and astronomical imaging, the images obtained are usually cor-
rupted or distorted by blurring due to atmospheric turbulence and noise. A forward model
simulating such a process is usually in the form

(Kf)(x, y) :=
∫ b

a

∫ d

c

k(x− ξ, y − η)f(ξ, η)dξdη = h(x, y). (1)

The problem of image restoration is the determination of the original object distribu-
tion f according to the recorded imageh and knowledge about the PSFk (point spread
function[1−3]). (1) is a convolution process,K represents the convolution operator. By
operator theory,K maps a functionf from spaceD(f) to a functiong into spaceD(h).
The image restoration problem is then to find the inverse transformationK−1 such that
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K−1h −→ f. (2)

Essentially, the image restoration problem is an ill-posed problem. In other words,
such problem concerns with the existence and uniqueness of an inverse transformation
and particularly, the stability of the transformation[4]. The existence and uniqueness are
usually easy to overcome, while the stability is the key problem deserves much more
considering. Since in remote sensing and astronomical imaging, the functionh is the
observation, a trivial perturbation inh may produce significant perturbation inf . For
example, there may existδout which can be made arbitrarily small such that

K−1(h + δout) = f + δin, (3)

whereδin À δout, butδin may not be arbitrarily small and hence cannot be neglected.

For digital image restoration, it is useful to develop a discrete-discrete model for im-
age and object. The discrete-discrete model corresponding to (1) is a linear relation as the
following matrix-vector equation:

Kf = h, (4)

wheref andh are lexicographically ordered vectors created from sampled object and
image andK is the matrix resulting from the sampling point spread function. Because
error is always involved in the experiment or sampling, noise cannot be ignored in the
model above, so the matrix-vector equation can be expressed as

Kf = h + n, (5)

n is the noise which is also in lexicographically ordered vectors. To be simple, the matrix
K is of orderN 2 ×N 2, which is usually a tensor;f ,h,n are vectors of orderN 2. Since
the ill-posed property of model (1), the problem (5) is ill-conditioned. It is very difficult
to solve this linear equation by direct methods, such as the LU decomposition.

One way to solve (5) is the least square error (LSE) method, i.e. one minimizes the
problem

J1[f ] := ‖Kf − h‖2 (6)

such that‖n‖ goes to minimization. But we must note that the LSE is unstable. Because
the minimization ofJ1 is equivalent to

KTKf = KT h,

which is called the “normal equation”. Since

cond(KTK) À cond(K),
so it is more ill-conditioned.

Tikhonov regularization is a popular way to overcome the instability of LSE, which
can be considered as a penalized least square error (PLSE) problem

J2[f ] := ‖Kf − h‖2 + α‖f‖2
L, (7)

where‖f‖L
def=

√
(Lf, f), L is the scale operator, for example,L can be chosen as a

semi-definite or definite matrix. If we chooseL ≡ I (I is the identity matrix), then it
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leads to the standard Tikhonov regularization.α is the regularization parameter which is
greater than zero. For the Tikhonov regularization, the choice of the parameterα is not
an easy thing. It must make a trade-off between the noise and the regulation error. Ifα is
chosen too large, then (7) is over-regularized; ifα is chosen too small, (7) is still unstable.

Trust region method is another way to overcome the instability in solving the ill-
conditioned problem (5). In refs.[5, 6], the authors have developed trust region-cg method
for such problem. This paper will develop a truncated Lanczos method in the trust region
framework. We will see, for digital image restoration problem, this method is fast, robust
and useful. This paper is organized in the following way: in section 2, the relationship
between conjugate gradient method and Lanczos method is presented; in section 3, a trun-
cated Lanczos method for trust region subproblem is introduced; in section 4, a precon-
ditioned Lanczos algorithm is developed and a specific algorithm for the matrix-vector
multiplication is designed; finally in section 5, some numerical simulations are given.

2 Relationship between conjugate gradient method and Lanczos method

The conjugate gradient method is one way of Krylov subspace method for solving the
minimization problem

minJ1[f ] =
1
2
‖Kf − h‖2 =

1
2
fTKTKf − hTKf +

1
2
hT h, (8)

The general framework of conjugate gradient method reads as follows:

Algorithm 2.1. The conjugate gradient (CG) method

Step 0: Givenf 0; setg0 = grad(J1[f 0]) and letp0 = −g0; setj = 0 andε > 0
(tolerance), perform the iteration:

Step 1: Calculateaj = (gj, gj)/(pj,KTKpj);

Step 2: Setf j+1 = f j + ajpj and computegj+1 = gj + ajKTKpj . If ‖gj+1‖ < ε,
STOP;

Step 3: Calculateβj = (gj+1, gj+1)/(gj, gj);

Step 4: Setpj+1 = −gj+1 + βjpj, j := j + 1, go to Step 1.

In Algorithm 2.1,f 0 is the initial trial step,grad(·) denotes the gradient of a given
functional,aj is the step size in each iteration,pj is the search direction in each iteration,
βj is the Fletcher-Reeves correction. This method generates a basis forK(KTK, g0, k) as

Kk = span{p0, p1, · · · , pk} = span{g0, g1, · · · , gk}.
There are also other ways to generate the basis for the Krylov spaceKk, say, the

Lanczos method (Algorithm 2.2). The algorithm reads as follows:

Algorithm 2.2. The Lanczos method

Step 0: Givenf 0; set g0 = grad(J1[f 0]) and lety0 = g0, q−1 = 0; for j =
0, 1, · · ·, perform the following iteration:
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Step 1: Calculateγj = (yj, yj);

Step 2: Calculateqj = yj/γj ;

Step 3: Calculateδj = (qj,KTKqj);

Step 4: Setyj+1 = KTKqj − δjqj − γjqj−1.

The Lanczos method is constructive, which is based on a particular decomposition
of the matrixKTK to a tridiagonal form. This method generates an orthonormal basis
{q0, q1, ..., qk} for the same Krylov spaceKk. If we defineQk by the matrix[q0, ..., qk],
where eachqi is in the vector form, and take into account thatq−1 = 0, then the Lanczos
method can be written in a matrix form directly:

KTKQk −QkTk = γk+1qk+1e
T
k+1, (9)

QT
k Qk = Ik+1, (10)

where the tridiagonal matrixTk is in the form

Tk =




δ0 γ1

γ1 δ1 .

. . .

. δk−1 γk

γk δk




. (11)

Some useful properties can be deduced from Algorithm 2.2:

QT
kKTKQk = Tk, (12)

QT
k g0 = γ0e1, (13)

g0 = y0 = γ0q0. (14)

The equivalence between the two methods is that the elements ofTk can be expressed
explicitly by the parameters generated by Algorithm 2.1 in the following fashion[11]:

γk =
√

βk−1/ | αk−1 |, δk =
1
αk

+
βk−1

αk−1

. (15)

Therefore the Lanczos tridiagonal matrixTk is available as a trivial byproduct of the con-
jugate gradient method.

3 Lanczos method for trust region subproblem

Trust region methods are a group of methods for ensuring global convergence while
retaining fast local convergence in optimization algorithms[7,8]. In trust region method,
one can solve the unconstrained minimization problem

minJ1[f ] := ‖Kf − h‖2. (16)

This problem can be approximated by a trust region subproblem (TRS):

min
s∈S

φ(s) = (grad(J1[f ]), s) +
1
2
(Hess(J1[f ])s, s), (17)

s.t. ‖s‖ 6 ∆, (18)
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where,S is some subspace inRN2
. The gradient and Hessian of the objective function

J1[f ] can be computed explicitly as

grad(J1[f ]) = KTKf −KT h, Hess(J1[f ]) = KTK. (19)

∆ is the trust region radius which is an estimate of how far we trust the quadratic approx-
imate model.

The key of trust region method is that the more reduction of the functional value
J1[f ], the bigger increasing of the trust region radius∆. By the minimization property,
the functional values are always decreasing when solving the trust region subproblem
during the iterations. Letsk be a solution of (17) and (18) at thek-th iteration, we then
define a ratio by the functional value

rk =
J1[fk + sk]

J1[fk]
(20)

or by the norm of the gradient, i.e.

rk =
‖grad(J1[fk + sk])‖
‖grad(J1[fk])‖

(21)

to decide whether the trial stepsk is acceptable or not and to adjust the new trust region
radius.

Based on the standard trust region method and the analysis above, we outline a realis-
tic algorithm as follows:

Algorithm 3.1. Trust region algorithm

Step 0: Initialization. Given the initial guess valuef0 and an initial trust-region radius
∆0; choose parametersη1, η2, γ1, γ2 andγ3 such that0 < η1 6 η2 < 1 and0 < γ1 6
1 6 γ2 6 γ3; computeJ1[f 0] and setk := 0.

Step 1: Step calculation. If the stopping rule is satisfied then STOP; else, solve (17)
and (18) to get a stepsk that “sufficiently reduce the model”.

Step 2: Acceptance of the trial point. ComputeJ1[fk + sk] and computerk by (20)
or (21), set

fk+1 =





fk + sk, if rk 6 η1,

fk, otherwise.

Step 3: Update of the trust-region radius. Set

∆k+1 ∈




[γ2‖sk‖, γ3∆k] , if rk 6 η2,

[γ1∆k, γ2∆k] , otherwise.

Step 4: Evaluategrad(J1[fk+1]); setk := k + 1; go to Step 1.

In Step 1, the stopping rule can be based on the values ofJ1[fk] or grad(J1[fk]).
In our numerical tests, the iteration is terminated ifJ1[fk] 6 ε is satisfied, whereε is the
tolerance which can be adjusted by users.
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In refs. [9, 10], the authors consider the solution of the TRS by conjugate gradient
method, we call it the Steihaug-Toint method. This method is very technical. If the trial
step cross the boundary, it simply truncated the step at the boundary. That is, the Steihaug-
Toint method is unconcerned with the trust region until it encounters its boundary and
stops. Although this strategy is simple, it is somewhat practical. We can explore the
property of the method more deeply. Utilizing the conjugate directions generated by CG,
and noting the relationship between conjugate gradient method and Lanczos method, it
is easy to reduce the system to a tridiagonal system. The cost of solving a tridiagonal
system will far less than that of the original system. Thus our new approach is developed
by integrating Lanczos method with Steihuag-Toint’s CG method. When the trial step
constrains is in the trust region, the iteration follows the Steihaug-Toint method; when the
trial step blunders into its boundary, we solve the approximate tridiagonal system derived
from the original system iteratively until the approximation satisfy the terminal condition.

Now, let
s ∈ S =

{
s ∈ RN2 |s = Qku

}

and seek
sk = Qkuk, (22)

wheresk solves (17) and (18). It then follows directly from (12)—(14) thatuk solves the
problem

min
u∈Rk+1

J3[u] := (u, γ0e1) +
1
2
(u, Tku), (23)

s.t. ‖u‖ 6 ∆. (24)

The KKT conditions for a feasible pointuk to be a solution of problem (23) and (24) with
corresponding Lagrangian parameterλk are

Tk(λk) := (Tk + λkI)uk = −γ0e1,

λk(‖uk‖ −∆) = 0,

‖uk‖ 6 ∆, λk > 0.

To be simple of notation, in the following, we denote the gradient of the function
J1[f ] by g. The following theorem tells us how good the approximation is.

Theorem 3.1[11].

(KTK + λkI)sk + g = γk+1(ek+1, uk)qk+1, (25)

‖(KTK + λkI)sk + g‖ = γk+1‖(ek+1, uk)‖. (26)

Proof. We have

KTKsk = KTKQkuk

= QkTkuk + γk+1(ek+1, uk)qk+1 from (9)

= −Qk(λkuk + γ0e1) + γk+1(ek+1, uk)qk+1

= −λkQkuk − γ0Qke1 + γk+1(ek+1, uk)qk+1
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= −λksk − γ0q0 + γk+1(ek+1, uk)qk+1

= −λksk − g + γk+1(ek+1, uk)qk+1. from (14)

This then directly gives (25), and (26) follows from the orthonormality ofqk+1. Q.E.D.

Therefore once we knowγk+1 and the last component ofuk, we can measure the
error directly. This is convenient as we even do not need to knowsk or Qk at all. Now,
we outline our algorithm as follows:

Algorithm 3.2. The Lanczos method for TRS (TRLan)

Step 0: Lets0 = 0, g0 = grad(J1[f ]), γ0 =
√

(g0, g0), andp0 = −g0; set
ε(tolerance); set the flag INTERIOR as true and setk := 0.

Step 1: Setαk = (gk, gk)/(pk,Hess(J1[f ])pk), obtainTk from Tk−1 using (11).

Step 2: If INTERIOR is true, butαk < 0 or ‖sk + αkpk‖ > ∆, reset INTERIOR to
false.

Step 3: If INTERIOR is true, setsk+1 = sk + αkpk; otherwise, solve the tridiagonal
trust-region subproblem (23) and (24) to obtainuk.

Step 4: Setgk+1 = gk + αkHess(J1[f ])pk.

Step 5: If INTERIOR is true and‖gk+1‖ 6 ε, STOP. If INTERIOR is false and
γk+1|(ek+1, uk)| 6 ε, go to Step 7.

Step 6: Setβk = (gk+1, gk+1)/(gk, gk) andpk+1 = −gk+1 + βkpk, k := k + 1, go
to Step 1.

Stem 7: Recoversk = Qkuk by recurrences or obtainingQk from backing store,
STOP.

In the algorithm above, we need to recoversk from uk by Qk, so the Lanczos vectors
will either need to be saved on backing store or regenerated. For example, economies can
be made by saving the values ofαi andβi during the first pass, and reusing them during
the second.

Now another question arises: how to solve the tridiagonal system efficiently? After
carefully investigating of the system, we find that Newton’s method seems appropriate
here. Since the Hessian is tridiagonal, it is not very expensive to factorize, and so does
computing its leftmost eigenvalue. Another reason is that the hard case will not occur[11],
although the so called “almost” hard case may still happen (But this will not affect us much
thanks to the specialties of the application). So the following algorithm will be adopted:

Algorithm 3.3. Find model minimizer when Eigen solution is cheap[7]

Step 0: Letκeasy ∈ (0, 1).

Step 1: IfTk is positive definite, setλ = 0; otherwise, compute its leftmost eigenvalue
λ1, and setλ = −λ+

1 .
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Step 2: FactorizeTk(λ) = LLT , and solveLLT u = −g.

Step 3: If‖u‖2 6 ∆

Step 3a: Ifλ = 0 or ‖u‖2 = ∆, STOP;

Step 3b: otherwise, compute an eigenvectorv1 corresponding toλ1, find the root “α”
of the equation‖u+αv1‖2 = ∆ which makes the modelJ3(u+αv1) be smallest, replace
u by u + αv1, and STOP.

Step 4: If
|‖u‖ −∆| 6 κeasy∆,

STOP.

Step 5: SolveLw = u and replaceλ by

λ +
(‖u‖ −∆

∆

) ( ‖u‖2
2

‖w‖2
2

)
.

Step 6: FactorizeTk(λ) = LLT , solveLLT u = −g and go to Step 4.

In Step 1,λ+ is barely smaller thanλ1. In practice, as long as|λ+
1 − λ1| is small, the

solution is acceptable.

4 Some numerical extensions

In many applications, the blurring process is assumed to be spatially invariant, that is,
the blur is independent of position and a blurred object will look the same regardless of its
position in the image. Thus the PSF is represented by the image of a single point source. In
this case, the structure of the discrete operatorK will be highly structured such as BCCB,
BTTB and so on. Those structures have dominative importance in order to develop high
performance algorithm.

4.1 Preconditioned Lanczos method

Preconditioning is often used with conjugate gradient methods, to accelerate the rate
of convergence, that is, to reduce the number of iterations which are needed to compute
a good approximation of the solution. Recalling that the relationships (12)—(15) also
hold for preconditioned conjugate gradient method and preconditioned Lanczos method,
therefore, we apply the preconditioning technique to Lanczos method.

We outline the preconditioned Lanczos method for trust region subproblem as follows:

Algorithm 4.1. The preconditioned Lanczos method for TRS (PTRLan)

Step 0: Lets0 = 0, g0 = grad(J1[f ]), v0 = M−1g0, γ0 =
√

(v0, g0) and
p0 = −v0. Setε(tolerance), set the flag INTERIOR as true and setk := 0.

Step 1: Setαk = (gk, vk)/(pk,Hess(J1[f ])pk), obtainTk from Tk−1.

Step 2: If INTERIOR is true, butαk < 0 or ‖sk + αkpk‖M > ∆, reset INTERIOR
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to false.

Step 3: If INTERIOR is true, setsk+1 = sk + αkpk; otherwise, solve the tridiagonal
trust-region subproblem (23) and (24) to obtainuk.

Step 4: Setgk+1 = gk + αkHess(J1[f ])pk.

Step 5: If INTERIOR is true and‖gk+1‖M−1 6 ε, STOP. If INTERIOR is false and
γk+1|(ek+1, uk)| 6 ε, go to Step 7.

Step 6: Setβk = (gk+1, vk+1)/(gk, gk) andpk+1 = −vk+1 + βkpk, k := k + 1, go
to Step 1.

Step 7: Recoversk = Qkuk by recurrences or obtainingQk from backing store,
STOP.

The choice of an appropriate preconditioner in PTRLan depends on the trade-off be-
tween the gain in the convergence rate and the increased cost that results from applying
the preconditioner. As we see, the matrices that arise in image restoration are highly
structured, involving Circulant and Toeplitz matrices and so on. Preconditioning such
matrices has been thoroughly investigated in the literature, see the survey paper[12] and
the references therein. Moreover, many of these approaches have been applied to image
restoration.

Although a variety of approaches to preconditioning have been proposed, the simplest
preconditioner is the diagonal preconditioner which can be computed easily, and that is
the approach we consider in this paper. But it should be noted that, in principle, many of
the other fast transforms based on preconditioners can be used as well.

4.2 Matrix-vector multiplication

For iterative methods, such as conjugate gradient method and Lanczos method, matrix-
vector multiplication is the bottle-neck of computation. But utilizing the special structure
of K, matrix-vector multiplication can be done by using the two dimensional discrete
Fourier transform. That is to say, it will be done as fast as FFTs.

All BCCB matrices can be written as

K = F∗ΛF ,

whereF is the two-dimensional discrete Fourier transform matrix,F∗ is the complex
conjugate transpose ofF andΛ is a diagonal matrix containing the eigenvalues ofK.
Moreover, using properties of the matrixF , it is not difficult to show that the eigenvalues
ofK can be obtained by computing a two-dimensional FFT of the first column ofK. Thus,
for computingy = Kx, we use

y = F∗ΛFx.

If K is a BTTB matrix, matrix-vector multiplication can be done by embeddingK into a
larger BCCB matrix, padding outside the borders of the image with an appropriate number
of zeros, and then using FFTs as BCCB matrix.
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In some cases, for example, the Gaussian point spread function (PSF),K can also be
represented by a kronecker tensor product of two low order matricesA andB asK =
A ⊗ B. If K is taken as a band matrix, say, ifA andB are taken as band matrices, the
performance of the matrix-vector multiplication can even be enhanced.

In the following, we will demonstrate computingy = Kx by an economic algorithm
for Gaussian PSF, whereK is of ordermn×mn. SupposeA,B are tridiagonal matrices,
so the different elements ofK are onlyC = A(1 : 2, 1) ⊗ B(1 : 2, 1). We will give
this algorithm in a MATLAB code languages. In Algorithm 4.2, to evaluatey by the
function subroutiney = MatV ecTri(m,n, C, x), we need to call another subroutine
b = blockmulti(m,n, D, x). Some MATLAB notations are introduced:y(l1 : l2)
represents a new vector whose elements consist of rowl1 to row l2 of vectory, where
l1, lj are two integers.b(l1 : h : l2) represents a new vector whose elements consist of
row l1 to row l2 of vectorb with step sizeh. Also note thatC is in the vector form and
only possesses4 numbers, thereforeC(l1 : l2) represents choosing elements ofC from
row l1 to l2.

Algorithm 4.2. Block matrix-vector multiplication for Gaussian PSF

function y = MatV ecTri(m,n, C, x)
y = blockmulti(m,n, C(1 : 2), x);
x = blockmulti(m,n, C(3 : 4), x);
y(1 : n ∗ (m− 1)) = y(1 : n ∗ (m− 1)) + x(n + 1 : m ∗ n);
y(n + 1 : m ∗ n) = y(n + 1 : m ∗ n) + x(1 : n ∗ (m− 1));

function b = blockmulti(m,n, D, x)
b = zeros(m ∗ n, 1);
tmp = D(2) ∗ x;
b(1 : m ∗ n− 1) = tmp(2 : m ∗ n);
b(n : n : m ∗ n) = 0;
b = D(1) ∗ x + b;
tmp(2 : m ∗ n) = tmp(1 : m ∗ n− 1);
tmp(1 : n : m ∗ n) = 0;
b = b + tmp.

For our algorithm, the cost of the matrix-vector multiplication is only4mn multipli-
cations. On the other hand, if the matrix-vector multiplication is performed by the FFT,
then its amount of work isO(mn log2(mn)). When the band width ofA, B are set to be
5, the same trick can also be effective. Therefore our algorithm is very effective for some
special problems.

5 Numerical simulation

In this section, we give examples on the restoration of remotely sensed images. The
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blurring process is modelled by a Gaussian point spread function:

k(x, y, ξ, η) =
1

2πρρ̄
exp

(
−1

2

(
x− ξ

ρ

)2

− 1
2

(
y − η

ρ̄

)2
)

, (27)

whereρ andρ̄ are two constants that characterize the blurring in thex andy directions,
respectively. In our test, we chooseρ = ρ̄ = 0.7.

Clearly, (27) can be written in the form

k(x, y, ξ, η) = k1,ρ(x, ξ)k2,ρ̄(y, η), (28)

whereki,ζ(x, ξ) = 1√
2πζ

exp(− 1
2
(x−ξ

ζ
)2), i = 1, 2. The discretization of thek can be

realized by the discretization ofk1 andk2, bothk1 andk2 are in Toeplitz form. The tensor
product ofk1 andk2 constitutek. We choosek1 andk2 as banded matrix, the band-width
is five. Hence the discretization ofk is a block Toeplitz matrix with Toeplitz blocks. Note
thatk1, k2 have narrow bandwidths, the calculation of matrix-vector multiplication and
the factorization ofTk(λ) in Algorithm 3.3 are extremely cheap.

To simulate the blurring process, we assume that the noise satisfies Gaussian distri-
bution with zero mean and standard deviationσ. So, we add Gaussian white noise to the
image data, i.e. instead off , we would have

fn = f + δ · rand(mn, 1),

where rand(·, 1) means the collum vector of Gaussian white noise,δ is the error level
which is specified by the users.

We apply our methods to three different remotely sensed images: the first is a256×
256 image of an airfield of California, the second is a256×256 image of Madrid Stadium,
and the third is a256× 256 photogrammetric airborne image of Beijing City. Fig. 1 lists
the true images. To test the efficiency of our algorithm, we add different error level noise
to the true images. First, we add Gaussian white noise to these images with the error
level δ = 0.001. Fig. 2 lists the blurred images. Fig. 6 lists the images restored by
trust region method whose subproblem is solved by Lanczos method (denoted by LTRS).
Fig. 10 lists the images restored by trust region method whose subproblem is solved by
preconditioned Lanczos method (denoted by PLTRS). In fig. 10, the preconditioner is
taken as main diagonal ofKTK. The same preconditioning trick is employed to other
tests with different error level. Next we add Gaussian white noise to the true images
with the error levelδ = 0.005. Fig. 3 lists the blurred images. Fig. 7 lists the images
restored by trust region method whose subproblem is solved by LTRS. Fig. 11 lists the
images restored by trust region method whose subproblem is solved by PLTRS. Then we
add large Gaussian white noise to the true images with the error levelδ = 0.01. Fig. 4
lists the blurred images. Fig. 8 lists the images restored by trust region method whose
subproblem is solved by LTRS. Fig. 12 lists the images restored by trust region method
whose subproblem solved by PLTRS. Finally, we add larger Gaussian white noise to the
true images with the error levelδ = 0.02. Fig. 5 lists the blurred images. Fig. 9 lists the
restored images by LTRS. Fig. 13 lists the restored images by PLTRS.
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Fig. 13. The restoration images by preconditioned Lanczos method for error levelδ = 0.02.

Table 1 The iteration results for error levelδ = 0.001

Images Initer Outiter Error

LTRS PLTRS LTRS PLTRS LTRS PLTRS

Airfield 41 35 3 5 4379.5589 4873.0837

Stadium 27 27 3 5 3117.8386 3335.4046

Airborne 43 37 3 5 4640.2131 5196.2899

Table 2 The iteration results for error levelδ = 0.005

Images Initer Outiter Error

LTRS PLTRS LTRS PLTRS LTRS PLTRS

Airfield 44 36 3 5 4627.4995 4937.3513

Stadium 39 27 3 5 3000.2422 3392.6917

Airborne 45 38 3 5 4854.0366 5251.5561

Table 3 The iteration results for error levelδ = 0.01

Images Initer Outiter Error

LTRS PLTRS LTRS PLTRS LTRS PLTRS

Airfield 45 37 3 5 5972.9118 5443.6936

Stadium 47 37 4 5 5884.7627 5709.6846

Airborne 44 27 3 5 4774.5657 3607.3968

Table 4 The iteration results for error levelδ = 0.02

Images Initer Outiter Error

LTRS PLTRS LTRS PLTRS LTRS PLTRS

Airfield 69 48 5 6 11364.7184 8572.6459

Stadium 67 44 5 6 10652.6523 7542.3392

Airborne 67 53 5 6 10838.7183 8687.0703
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