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4. INRA-Unitè de Bioclimatologie 84914, Avignon, France
Correspondence should be addressed to Wang Yanfei (email: yfwang@irsa.ac.cn)
Received January 20, 2005

Abstract The symmetric kernel-driven operator equations play an important role in
mathematical physics, engineering, atmospheric image processing and remote sensing
sciences. Such problems are usually ill-posed in the sense that even if a unique solution
exists, the solution need not depend continuously on the input data. One common tech-
nique to overcome the difficulty is applying the Tikhonov regularization to the symmetric
kernel operator equations, which is more generally called the Lavrentiev regularization.
It has been shown that the iterative implementation of the Tikhonov regularization can
improve the rate of convergence. Therefore in this paper, we study the iterative Lavren-
tiev regularization method in a similar way when applying it to symmetric kernel problems
which appears frequently in applications, say digital image restoration problems. We first
prove the convergence property, and then under the widely used Morozov discrepancy
principle(MDP), we prove the regularity of the method. Numerical performance for digital
image restoration is included to confirm the theory. It seems that the iterated Lavrentiev
regularization with the MDP strategy is appropriate for solving symmetric kernel problems.

Keywords: Lavrentiev regularization, iterative implementation, discrepancy principle, image restoration.

DOI: 10.1360/122004-176

1 Introduction

In mathematical physics and problems of remote sensing, we are often faced with the
inversion of the operator equation

Af = g, (1)

or ∫

Ω

k(x, y)f(y)dy = g(x), (2)

where A is the operator mapping f ∈ D(f) ⊂ F into G. The operator (1) is usually
the first kind of Fredholm integral equation (2). In (2), k(x, y) is the kernel which is a
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nondegenerate square integrable function and g(·) is a known function, usually the obser-
vation. In remotely sensed image processing and atmospheric turbulence, the kernel k(·, ·)
is usually a point spread function (PSF) or more generally a modulation transfer function
(MTF), which is sometimes symmetric, that is k(x, y) = k(y, x); hence the operator A

itself is a self-adjoint positive semi-definite operator. Examples for this kind of kernel are
some diffraction limited aperture, statistical Gaussian filter, and so on[1,2]. In the following
context, we will give some investigation on the symmetric kernel operator equation (1).
Without loss of generality, we also assume that A is symmetric semi-definite. Otherwise,
(1) can be replaced by

A2f = Ag. (3)

Then A2 is symmetric semi-definite, and Ag serves as the new right-hand side.

Even for the symmetric semi-definite kernel operator equation (1), it is still ill-posed[3].
This is because the r.h.s. g of (1) usually represents observations, so g may not belong
to the range of A. Moreover, g is usually contaminated with noise. Small perturbation
in the r.h.s. g will lead to large oscillation of the solution[4−6]. Tikhonov regularization
can be employed to solve the symmetric operator equation (1), which is usually called the
Lavrentiev regularization, i.e. instead of (1) we solve a well-posed problem

Afα + αfα = g, (4)

where α > 0 is called the regularization parameter. It is shown by Schock in ref. [7]
that the optimal convergence rate ‖f − fα‖ = O(αν) can be satisfied provided that the
smooth condition f ∈ R(Aν), ν ∈ (0, 1] is satisfied. The Lavrentiev regularization is
generally introduced for solving Volterra integral equations of the first kind[8,9].

For application problems, the r.h.s. g cannot be obtained exactly, and instead one may
have gδ such that

‖gδ − g‖ 6 δ < ‖gδ‖
and gδ −→ g as δ −→ 0. In such a case, the Lavrentiev regularization should be in the
form

Afα
δ + αfα

δ = gδ, (5)

where α is dependent on the error level δ and satisfies α(δ) −→ 0 and f α
δ −→ f as

δ −→ 0. Furthermore if we know some smooth condition f ∈ R(Aν), ν ∈ (0, 1], then
the optimal convergence rate of asymptotic order ‖f − fα

δ ‖ = O(δ
ν

ν+1 ) can be satisfied.

It has been shown that the iterative version of the Tikhonov regularization can improve
the rate of convergence[10,11]. In ref. [10], the authors use iterative Tikhonov regulariza-
tion to approximate the generalized inverse of the operator, while the latter is known as
the generalized inverse method for ill-posed problems[12] ; in ref. [11], based on the Mo-
rozov’s discrepancy principle, the authors prove the optimality of the iterative Tikhonov
regularization. In ref. [13], the authors consider the non-stationary iterative Tikhonov
regularization and prove the optimality. The iterative Lavrentiev regularization has been
considered for solving Volterra integral equations of the first kind[14], and applications to
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the non-destructive testing of optical-fibre preforms are included. Accordingly, in this pa-
per, we will discuss the iterative Lavrentiev regularization methods for symmetric kernel
operator equation (1):

(A + αI)fk = αfk−1 + g, k = 1, 2, · · · , (6)

f0 be given, (7)

where α > 0 is given as an apriori, and A is assumed to be a symmetric positive semi-
definite operator. The convergence properties for both noise-free case and perturbed case
are considered.

2 Convergence properties for exact data

Note that (6)–(7) can be rewritten as

fk = (A + αI)−1g + α(A + αI)−1fk−1, (8)

f0 be given. (9)

By induction for k = 1, 2, · · ·, the iteration process can be written in a simple form:

fk = Pk,α(A)g + Qk,α(A)f0, (10)

where Pk,α(t) and Qk,α(t) are generating functions (for more examples, please see refs.
[4, 11]) in the form

Pk,α(t) =
1

t
(1−Qk,α(t)), (11)

Qk,α(t) =

(

α

α + t

)k

. (12)

It is clear that
‖Qk,α(A)‖ 6 1

and if the inverse of A exists,

Pk,α(A) −→ A−1 as k −→∞.

Hence if A−1 exists, then fk −→ f̂
def
= A−1g as k −→∞.

Now let f̂ be any one solution of Af = Pg, where P is an orthogonal projection of
G onto R(A). Note that the initial iterate f0 is given by users. Therefore we can choose
f0 = 0. In this way, we have

f̂ − fk =f̂ − Pk,α(A)g −Qk,α(A)f0

=f̂ − Pk,α(A)Af̂

=(I − Pk,α(A)A)f̂ . (13)

It can be seen that Qk,α(t) = 1− tPk,α(t) < 1. Therefore

f̂ − fk = Qk,α(A)f̂ (14)

and
‖f̂ − fk‖ = ‖Qk,α(A)f̂‖. (15)
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Furthermore, if we know some apriori information about the solution f̂ , say the smooth-
ing condition about f̂ : f̂ ∈ R(Aν) ⊂ N(A)⊥, ν > 0, the optimal convergence rate of
asymptotic order can be achieved. The convergence analysis will hinge on an investigation
of the function

Γ (t) = tν

(

α

t + α

)k

.

As we are interested in fixed ν > 0 and k → ∞, we shall assume k > ν. Also without
loss of generalily, we assume that ‖A‖ 6 1. An easy calculation shows that Γ(t) can be
maximized if and only if t = t∗, where

t∗ =
ν

k − ν
α.

Hence the maximum value of Γ (t) is

Γmax(t) = Γ (t∗) = νν

(

α

k − ν

)ν(

k − ν

k

)k

. (16)

Theorem 2.1. Assume that f̂ ∈ R(Aν), k > ν > 0, then ‖f̂ − fk‖ 6 Cνν
ν(α

k
)ν .

Proof. Since f̂ ∈ R(Aν), and ν > 0, there exists a normalized function f ∈ N(A)⊥

such that f̂ = Aνf . From (15) and (16), we obtain
‖f̂ − fk‖ =‖Qk,α(A)Aνf‖

6νν

(

α

k − ν

)ν(

k − ν

k

)k

6C1,νν
ν

(

α

k − ν

)ν

6C2,νν
ν

(

α

k

)ν

, (17)

where C1,ν and C2,ν are two constants related to ν. Let Cν

def
= C2,ν . This proves the

theorem. Q.E.D.

Corollary 2.2. Under the condition of Theorem 2.1, we have
‖f̂ − fk‖ = O(k−ν). (18)

Furthermore, the “O” estimate in (18) cannot be improved to “o” estimate.

Proof. It is clear from Theorem 2.1 that ‖f̂ − fk‖ = O(k−ν). Now we prove the
“O” cannot be replaced with “o”. Instead we suppose that

maxΓt∈[0,∞)(t)
def
= tν

(

α

t + α

)k

= o(k−ν), k −→ ∞.

By Bernoulli’s inequality, we have
( α

t + α

)k

=
(

1− t

t + α

)k

>1− kt

t + α
.

Copyright by Science in China Press 2005



Iterative Lavrentiev regularization 471

Choosing t = k−1, we obtain

1− 1

k−1 + α
6 kν max

t∈[0,∞)
Γ(t) = o(1), k −→∞,

which is a contradiction. Q.E.D.

3 Regularity for inexact data

In this section we consider the perturbed case. We assume that the r.h.s. g is contami-
nated with noise, i.e. we have gδ and instead of (6)–(7), we have

(A + αI)f δ
k = αf δ

k−1 + gδ, k = 1, 2, · · · , (19)

f δ
0 be given. (20)

By setting f δ
0 = 0, the iterates f δ

k can be generated in the following way:

f δ
k = Pk,α(A)gδ. (21)

Suppose ‖gδ−g‖ 6 δ. We now derive a stability estimate for the approximation fk. Note
that

1− tPk,α(t) = Qk,α(t),

Qk,α(0) = 1.

We have by the convexity of Qk,α(t)

1−Qk,α(t)

t
=

Qk,α(0) −Qk,α(t)

0− t
6 −Q′

k,α(0).

It can be easily computed that Q′

k,α(0) = −k/α. Thus

Pk,α(t) 6 k/α. (22)

Since fk, f δ
k ∈ D(A), we have by (8)–(9), (19)–(20) and (22) that

‖fk − f δ
k‖ 6 ‖Pk,α(A)(g − gδ)‖ 6 δ · k/α. (23)

Therefore, a sufficient condition for the regularity of the approximations is that the iter-
ation index be chosen in terms of the error level, say k = k(δ), such that the following
condition

δ · k(δ) −→ 0 as δ −→ 0 (24)

is satisfied. As a consequence, we derive the following

Theorem 3.1. Let ‖gδ − g‖ 6 δ and the iteration index k = k(δ) be chosen such
that k(δ) −→ ∞ and (24) is satisfied as δ −→ 0. Then we have the regularity results:
‖f δ

k(δ) − f̂‖ −→ 0 as δ −→ 0.

Proof. By (15), (23) and noting that the following inequality

‖f δ
k(δ) − f̂‖ 6 ‖fk − f̂‖+ ‖fk − f δ

k(δ)‖,
the result is clear. Q.E.D.

Next we establish the optimal convergence rate of asymptotic order for the iterates {f δ
k}

if some priori information of the solution f̂ , say the smoothing condition, is provided.
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Theorem 3.2. Let ‖gδ − g‖ 6 δ. Assume that f̂ ∈ R(Aν), ν > 0. If we choose the
iteration index k = k(δ) in such an apriori way:

k(δ) = α · δ− 1
ν+1 ,

then
‖f̂ − f δ

k(δ)‖ 6 Dνδ
ν

ν+1 , (25)

where Dν is a constant with respect to ν.

Proof. By Theorem 2.1, Theorem 3.1 and note that the triangular inequality

‖f δ
k(δ) − f̂‖ 6‖fk − f̂‖+ ‖fk − f δ

k(δ)‖

6Cνν
ν(

α

k(δ)
)ν + δ · k(δ)

α

6(1 + Cνν
ν)δ

ν

ν+1

=Dνδ
ν

ν+1 ,

where Dν = 1 + Cνν
ν . Q.E.D.

From Theorem 3.2 we know that the optimal order of convergence is obtained if the
choice of k(δ) is in an apriori way, i.e. k(δ) = α · δ− 1

ν+1 . Both the iteration index k and
the parameter α serve as the regularization parameters. However, this is not applicable in
applications. In practice, a posteriori way will be better. A popular posteriori way is the
discrepancy principle: the iteration process should be stopped at the first occurrence of the
index k(δ) such that

‖Af δ
k(δ) − gδ‖ 6 τδ (26)

with τ > 1 another parameter.

In the following we will analyze that the iteration with the discrepancy principle as the
stopping rule is a regularization.

Theorem 3.3. If k(δ) is chosen by the above stopping rule, then

‖g −Afk(δ)‖ 6 (τ + 1)δ, (27)

‖g −Afk(δ)−1‖ > (τ − 1)δ. (28)

Moreover, the discrepancy principle (26) will terminate the iteration after k(δ) < ∞
iterations.

Proof. Note that Qk,α(t) 6 1 and

g −Afk−1 = gδ −Af δ
k−1 −Qk,α(A)(gδ − g)

and
g −Afk = gδ −Af δ

k + Qk,α(A)(g − gδ),

so let k = k(δ) and by triangular inequalities. We have

‖g −Afk(δ)−1‖ =‖gδ −Af δ
k(δ)−1 −Qk(δ)−1,α(A)(gδ − g)‖

>‖gδ −Af δ
k(δ)−1‖ − ‖Qk(δ)−1,α(A)(gδ − g)‖

>τδ − δ = (τ − 1)δ;
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‖g −Afk(δ)‖ =‖gδ −Af δ
k(δ) + Qk(δ),α(A)(g − gδ)‖

6‖gδ −Af δ
k(δ)‖+ ‖Qk(δ),α(A)(g − gδ)‖

6τδ + δ = (τ + 1)δ.

Furthermore, note that Qk,α(t) −→ 0 as k −→∞. Hence the discrepancy gδ−Af δ
k(δ)

satisfies

‖gδ −Af δ
k(δ)‖ =‖gδ −APk(δ),α(A)gδ‖

=‖Qk(δ),α(A)gδ‖
6ε,

where ε is an arbitrarily small number. This indicates that the discrepancy principle (26)
will terminate the iteration after k(δ) <∞ iterations. Q.E.D.

Theorem 3.4. Assume that f̂ ∈ R(Aν), ν > 0, f δ
k(δ) is the solution of (1) when yδ

instead of y is given and k(δ) is chosen according to (26). Then ‖f δ
k(δ)− f̂‖ = O(δ

ν

ν+1 ).

Proof. Suppose f̂ = Aνz, where z is normalized and z ∈ R(Aν), ν > 0. Then

fk(δ) − f̂ = Qk(δ),α(A)Aνz.

By Hölder’s inequality and (27) of Theorem 3.3, we have the estimate

‖fk(δ) − f̂‖ 6‖Qk(δ),α(A)z‖ 1
ν+1 ‖AQk(δ),α(A)Aνz‖ ν

ν+1

6‖z‖ 1
ν+1 ‖A(fk(δ) − f̂)‖ ν

ν+1

=O(δ
ν

ν+1 ).

Now assume that k(δ) > dν + 3e, by (28) of Theorem 3.3,

(τ − 1)δ <‖g −Afk(δ)−1‖
=‖AQk(δ)−1,α(A)Aνz‖.

By (16), we find

‖AQk(δ)−1,α(A)Aνz‖2 =(A2Qk(δ)−1,α(A)Aνz,Qk(δ)−1,α(A)Aνz)

6E1,ν(
α

k(δ)
)ν+2 · Cνν

ν(
α

k(δ)
)ν

=E2,ν(
α

k(δ)
)2(ν+1),

where E1,ν and E2,ν are two constants with respect to ν. Thus

(τ − 1)δ < Eν

(

α

k(δ)

)ν+1

, (29)

where Eν =
√

E2,ν . This shows

k(δ) 6 Fν · αδ−
1

ν+1 , (30)

where Fν = ( Eν

τ−1
)

1
ν+1 . Now by (23), we obtain

‖f δ
k(δ) − f̂‖ 6 O(δ

ν

ν+1 ) +
δ · Fν · αδ−

1
ν+1

α

www.scichina.com



474 Science in China Ser. F Information Sciences 2005 Vol.48 No.4 467—483

= O(δ
ν

ν+1 ). Q.E.D.

From this theorem we find that at the stopping index, k(δ)

α
= O(δ−

1
ν+1 ). Especially

when α ∼ δ, we have k(δ) = O(δ
ν

ν+1 ), which means k(δ) → O(1) as ν → 0 and
k(δ)→ O(δ) when ν is sufficiently large.

4 Digital image restoration

4.1 PSF convolution kernel-driven image restoration

This section provides some applications in applied optics and remote sensing sciences.
Atmospheric turbulence blur arises in applied optics and remote sensing is due to long-
term exposure through the atmosphere where turbulence in the atmosphere gives rise to
random variations in the refractive index. A simple forward model for simulating this pro-
cess is the convolution of the kernel k with the input signal f which results in a smoothing
function f :

k ? f
def
=

∫

Ω

k(x− y)f(y)dy = g(x). (31)

The kernel k is sometimes called the point spread function (PSF). The PSF k is more like
a Dirac delta function δ(x):







δ(x) = 0, if x ∈ R\0,
∫∞

−∞
δ(x) = 1, else.

(32)

The Dirac delta function is symmetric. By shifting property of the delta function, con-
volving with a delta function does not alter the function f . This is to be expected, since
we said convolving f with our choice of kernel k results in smoothing of f , because at-
mospheric turbulence is hard to predict and can currently only be accessed by statistic
process. In atmospheric applications, we usually choose the kernel k as a Gaussian point
spread function

k(x) =
1√
2πσ

exp
(

− 1

2

(x

σ

)2)

, (33)

where σ is a positive constant. In two-dimensional cases, the kernel k is in the form

k(x, y) =
1√
2πσ

exp
(

− 1

2

(x2 + y2

σ

))

. (34)

The larger σ we choose, the more f gets smoothed. So by the same argument, the smaller
σ we choose, the more the convolution result resembles f .

Example 4.1. Gaussian kernel-driven image restoration

The PSF kernel is the Gaussian function as in (33). The input signal is a 1d function
with two peaks

f(x) = 2 exp(−20(x − 0.2)2) + exp(−80(x− 0.8)2).

The interest domain is Ω = [0, 1] × [0, 1]. The right-hand side g can be obtained by
evaluating the convolution process (31). The inverse problem is recovering the unknown
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f by giving the right-hand side g. To numerically restore f , we discretize the domain
in both directions. The mesh grid numbers are 100. Both k and f are discretized by
collocation. This yields a simple matrix-vector equation

AF = G. (35)

The matrix A is 100 × 100 and it models Gaussian spatially invariant blur with point
spread function k. The plot of the PSF is illustrated in Fig. 1. Small values of A are
replaced by zero, and the resulting matrix A is a banded Toeplitz matrix . The bandwidth
we choose is p = 3, i.e. only pixels within a distance 2 contribute to the blurring.

Fig. 1. The Gaussian PSF.

The discretized matrix A is positive definite, which is illustrated in Fig. 2. Therefore,
our method works. To be meaningful, we assume that the right-hand side G is perturbed
by additive noise, i.e., instead of G, we would have

Gδ = G + δ · rand(size(G))

and solve the following equation
AF = Gδ, (36)

where rand(·) is the Gaussian white noise having the same dimension as that of g. Then
the iteration process reads as

F δ
k = (A+ αI)−1Gδ + α(A+ αI)−1F δ

k−1, (37)

F δ
0 = 0. (38)

Note that for α > 0, A + αI is always banded symmetric and positive definite. This
means that we can use the Cholesky decomposition for solving (37) and (38). For the
sake of saving the amount of computation, we apply the Gaxpy Cholesky decomposition,
which means

vector←− vector + matrix× vector
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and

A = D ·DT ,

where D is lower triangular with the same bandwidth as A. If N >> p, then the amount
of computation is O(N 2(p2 + 3p + 1)).

Fig. 2. Eigenvalues of discrete PSF kernel.

By Theorem 3.4, the optimized iteration steps are k(δ) = O(δ
ν

ν+1 ) when α ∼ δ. This
means that it needs very few steps to generate convergence for given error level δ ∈ (0, 1)

and any ν > 0. Therefore, by Theorem 3.4, the values of α are chosen as error level δ.
The simulation results are shown in Fig. 3. In all of the cases, we choose τ = 1.01. For
the first case, it needs 2 steps to reach the convergence with the residual 0.00027212. For
the second, it needs 2 steps to reach the convergence with the residual 0.0010836. For the
third, it needs 2 steps to reach the convergence with the residual 0.027465.

Example 4.2. Diffraction limited PSF kernel-driven image restoration

The atmospheric image is generated through a simulated diffraction limited PSF with
aperture p(x, y) and phase φ(x, y) convolved with the input f(x, y)

PSF ? f
def
=

∫

Ω

PSF (x− ξ, y − η)f(ξ, η)dξdη = g(x, y), (39)

where PSF = |IFT (p(x, y) exp(iφ(x, y))|2, IFT (·) is the inverse Fourier transform
of a function. We also denote FT (·) as the Fourier transform of a function. The simulated
PSF is an ideal source light which is plotted in Fig. 4 and the phase φ is plotted in Fig. 5.
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Fig. 3. The true image (dotted line) and restoration image (dashed line) with different error levels: (a) δ = 0.005;

(b) δ = 0.01; (c) δ = 0.05.

Fig. 4. The diffraction limited point spread function.
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Fig. 5. The phase function.

Note that the phase variation is small in this test to ensure the symmetric, positive semi-
definite property of the PSF. Practically, phase can be large. In the latter situation, instead
of Lavrentiev regularization, the Tikhonov regularization should be employed. The input
function f(x, y) is a farmland whose size is 256-by-256. Therefore, the discrete PSF size
is 65536-by-65536. This results in a matrix-vector expression of the convolution (39)

Avec(F ) = vec(G), (40)

where vec(·) defines a linear mapping which is the lexicographical column ordering of
the elements in the given array. The iteration process is as follows:

vec(F )δ
k = (A+ αI)−1vec(G)δ + α(A+ αI)−1vec(F )δ

k−1, (41)

vec(F )δ
0 = 0. (42)

Note that the large size of the matrix and the input, the direct matrix decomposition should
be precluded. It is clear that the convolution process can be implemented by 2d fast Fourier
transform FFT2 and 2d inverse fast Fourier transform IFFT2. Let us denote

̂vec(F )δ
k = FFT2(vec(F )δ

k),
̂vec(G)δ = FFT2(vec(G)δ),

Â = FFT2(A), Î = FFT2(I).

Then

̂vec(F )δ
k =

̂vec(G)δ + ̂αvec(F )δ
k−1

(|Â|+ αÎ)
,

vec(F )δ
k = IFFT2( ̂vec(F )δ

k).

The imposed error level is δ = 0.01. Using our method, it takes 3 steps to generate
convergence with the residual 0.0349. See Fig. 6 for the true, noisy and recovered images.
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Fig. 6. (a) True image; (b) blurred noisy image; (c) restoration.

4.2 Long slit PSF kernel-driven image restoration

The driven-kernels given in the former subsection are symmetric and positive semi-
definite. But not every symmetric kernel-driven equation can be applied directly by the
method developed in this paper. It is true that the iteration process can be implemented as
long as A+αI is positive definite for choice of large values of α without caring about the
negative values of A. However, nonconvergence will occur. For example, the operator L
of the Laplace transform

(Lf)(s) =

∫ tmax

tmin

exp(−st)f(t)dt

is symmetric but not positive semi-definite in the domain [0, 1].

Another example, the infinite long slit PSF can be written as the following function[15]:

k(θ, φ) = (cos θ + cos φ)
(sin r

r

)2

, (43)

where
r =

πw

λ
(sin θ + sinφ),

θ is the angle of emergence or observation which specifies the location of the image point,
φ is the angle of incidence which specifies the location of the source, w is the width of the
slit, and λ is the wavelength. It is easy to find that the kernel is symmetric. Use similar
discretization process as in Example 4.1, we have matrix-vector equation

AF = G. (44)

The matrix size of A is 100-by-100. The plot of the PSF is illustrated in Fig. 7. By
eigenvalue decomposition, we plot the eigenvalues in Fig. 8. It is clear that there are many
negative eigenvalues occur. Hence the PSF kernel is not semi-definite. To employ the
method developed in this paper, we need to transfer (45) into the one

A2F = AG. (45)

Now the new matrix A2 is semi-definite. For α > 0, A2 + αI is positive definite. How-
ever, the iteration process (6)–(7) is retraced to Tikhonov regularization if we recognize
thatA2 = ATA, i.e.

(A2 + αI)fk = αfk−1 + Ag, k = 1, 2, · · · , (46)
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Fig. 7. The long slit PSF.

Fig. 8. Eigenvalues of discrete PSF kernel.

f0 be given. (47)

The input signal is assumed to be the superimposed Gaussian

f(φ) = exp(−c1(φ− φa)
2) + c(−c2(φ− φb)

2).

Assuming that θ, φ ∈ [−π

2
, π

2
], we choose c = 1, c1 and c2 as high as 4, and φa and

φb as small as ± 1
2
. The restoration results are shown in Fig. 9. In all cases, we choose

τ = 1.01. For the first case, it needs 2 steps to reach the convergence with the residual
0.097774. For the second, it needs 2 steps to reach the convergence with the residual
0.1966. For the third, it needs 2 steps to reach the convergence with the residual 0.95535.
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Fig. 9. The true image (dotted line) and restoration image (dashed line) with different error levels: (a) δ=0.005;

(b) δ=0.01; (c) δ=0.05.

5 Further extension

We have noted that the iterative formula (6)–(7) can be implemented for non-stationary
choice of the regularization parameter α, i.e. instead of choosing fixed α > 0, we choose
α := αk and have

(A + αkI)fk = αkfk−1 + g, k = 1, 2, · · · , (48)

f0 be given. (49)

The regularization parameter αk can be chosen geometrically[16,17], say

αk = Const.× ξk−1, ξ ∈ (0, 1).

For the non-stationary iteration formula (48)–(49), and noting that Af̂ = g, we have

fk = αk(A + αkI)−1fk−1 + (A + αkI)−1Af̂. (50)

Since

I − (A + αkI)A = αk(A + αkI)−1,
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we have

f̂ − fk =f̂ − αk(A + αkI)−1fk−1 − (A + αkI)−1Af̂

=αk(A + αkI)−1(f̂ − fk−1)

= · · ·

=
k
∏

i=1

αi(A + αi)
−1f̂ .

Hence

fk = f̂ −
k
∏

i=1

αi(A + αi)
−1f̂ = Γ(A)f̂ , (51)

where Γ(·) is the filter function, which is in the form

Γ(t) = 1−
k
∏

i=1

αi

t + αi

.

It is clear that

Γ(t) −→ 1 as αi −→ 0, i −→∞
Γ(t) −→ 0 as t −→ 0.

This indicates that Γ(A) is a suitable approximation to the identity. Thus the iteration
process is convergent. Let us denote

γk(t) =
k
∏

i=1

αi

t + αi

.

Then
Γ(t) = 1− γk(t) and f̂ − fk = γk(A)f̂ .

Under the smoothing condition about f̂ : f̂ ∈ R(Aν) ⊂ N(A)⊥, ν > 0, we have

f̂ − fk = Φν(A)w
def
= γk(A)Aνw, (52)

with

Φν(t) = γk(t)t
ν = tν

k
∏

i=1

αi

t + αi

.

Now both the convergence and regularity results can be obtained by similar discussion as
in ref. [13].

6 Concluding remarks

We have developed an iterative method for the implementation of the Lavrentiev reg-
ularization for the semi-definite symmetric kernel operator equations. This method is an
extension of the iterative Tikhonov regularization method. However, it is meaningful to
study this kind of problem with the special structure/symmetric kernel due to its impor-
tance to practical applications. It seems from the theoretical analysis and computational
results that the iterative Lavrentiev regularization is appropriate for digital image restora-
tion when the model is semi-definite and symmetric.
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