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The determination of the aerosol particle size distribution function by using the particle spectrum extinction
equation is an ill-posed integral equation of the first kind [S. Twomey, J. Comput. Phys. 18, 188 (1975); Y. F.
Wang, Computational Methods for Inverse Problems and Their Applications (Higher Education Press, 2007)],
since we are often faced with limited or insufficient observations in remote sensing and the observations are
contaminated. To overcome the ill-posed nature of the problem, regularization techniques were developed.
However, most of the literature focuses on the application of Phillips—Twomey regularization and its variants,
which are unstable in several cases. As is known, the particle size distribution is always nonnegative, and we
are often faced with incomplete data. Therefore, we study the active set method and propose a regularizing
active set algorithm for ill-posed particle size distribution function retrieval and for enforcing nonnegativity in
computation. Our numerical tests are based on synthetic data for theoretical simulations and the field data
obtained with a CE 318 Sun photometer for the Po Yang lake region of Jiang Xi Province, China, and are per-
formed to show the efficiency and feasibility of the proposed algorithms. © 2008 Optical Society of America

OCIS codes: 010.1100, 010.1110, 280.1100, 100.0100, 100.3190, 000.4430.

1. INTRODUCTION

Atmospheric aerosols are suspensions of small solid or lig-
uid particles in the atmosphere, which play an important
role in atmospheric and environmental research since
they take part in many physical and chemical processes
in the atmosphere (see [1-5]). It is well known that char-
acteristics of the aerosol particle size, which can be repre-
sented as a size distribution function, say n(r), in the
mathematical formalism, play an important role in affect-
ing climate. Thus it is necessary to determine the size dis-
tribution function of the aerosol particles. Since the rela-
tionship between the size of atmospheric aerosol particles
and the wavelength dependence of the extinction coeffi-
cient was first suggested by Angstrom in 1929, the size
distribution began to be retrieved by extinction measure-
ments. First, Angstrt‘)m inferred that the parameters of a
Junge size distribution could be obtained from the aerosol
optical thickness (AOT) at multiple wavelengths, and he
obtained the useful Angstrom empirical formula of Junge
size distribution, 7,,,,(\)=B8\"%, where 7,,, is the mea-
sured AOT, S is the turbidity coefficient, and « is the Ang-
strom exponent reflecting the aerosol size distribution
(see [6]).

The attenuation of the aerosols can be written as inte-
gral equations of the first kind,

Taero()\) = f WzQex(r,)\7 ﬂ)n(r)dr + Q()\)y (1)
0

where r is the particle radius, n(r) is the columnar aerosol
size distribution (i.e., the number of particles per unit
area per unit radius interval in a vertical column through
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the atmosphere), 7 is the complex refractive index of the
aerosol particles, \ is the wavelength, o(\) is the error or
noise, and Q,.(r,\,7) is the extinction efficiency factor
from Mie theory. Since the AOT can be obtained from
measurements of the solar flux density with Sun photom-
eters, one can retrieve the size distribution by the inver-
sion of AOT measurements through the above equations.
This type of method is called extinction spectrometry,
which is not only the earliest method applying remote
sensing to determine atmospheric aerosol size character-
istics, but also the most mature method thus far (see
[7,8]).

To overcome oscillations in recovering the particle size
distribution function n(r), various techniques have been
developed, such as direct regularization methods (e.g.,
[9-14]), various iterative methods (e.g., [15-24]), moment
methods (e.g., [25,26]), statistical methods (e.g., [27,28])
and computed tomography (e.g., [29]). However, these
methods do not consider the constraint of nonnegativity of
aerosol particle size distributions and may lead to physi-
cally meaningless zero and negative solutions. This paper
will address this problem. In addition, the commercial
Sun photometer CE 318 can only supply four aerosol
channels; i.e., only four observations are obtained, a num-
ber insufficient for the retrieval of the particle size distri-
bution function n(r) by solving Eq. (1). Therefore, a nu-
merical difficulty occurs. To overcome the numerical
difficulty while keeping the solution nonnegative, we first
develop a constrained regularizing quadratic model and
then propose an active set method for solving the aerosol
particle size distribution retrieval problem.

The paper is organized as follows: Section 2 provides
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the background for the problem’s formulation in infinite
space and solution methods. Subsection 2.A formulates
the mathematical model as an operator equation of the
first kind; Subsection 2.B briefly reviews Phillips—
Twomey constrained optimization method and Tikhonov’s
regularization method. In Section 3, we formulate our
model by introducing positive constraints. In Subsection
3.A, we propose a regularizing active set method. Subsec-
tions 3.B and 3.C present the numerical implementation
details. In Section 4, we first perform theoretical simula-
tions to demonstrate the validity and feasibility of the
proposed method; then we use the ground-based remotely
sensed measurements to verify the numerical results
with our new methods. In Section 5, some concluding re-
marks are given. Finally, we provide two appendices to
state the fundamentals for the constrained quadratic pro-
gramming problem and to give a realistic algorithm for
solving the problem.

Throughout the paper, we use the following notation:
“:=" denotes “defined as;” K denotes an operator, and K de-
notes a discrete operator (i.e., matrix form) in finite di-
mensional space; “n” denotes the discretization of a con-
tinuous function n; “argmax” and “argmin” denote
“maximization for an argument” and “minimization for an
argument,” respectively; “max” and “min” denote “maxi-
mizing” and “minimizing” some functional, respectively; “
A™ and “AT” denote the adjoint and the transpose of ma-
trix A, respectively, and “s.t.” denotes “subject to.”

2. ILL-POSED NATURE OF MODEL
INVERSION AND REGULARIZATION

A common feature for all particle size distribution mea-
surement systems is that the relation between noiseless
observations and the size distribution function can be ex-
pressed as a first-kind Fredholm integral equation (e.g.,
[16,23,30]). For the aerosol attenuation problem (1), let us
rewrite Eq. (1) in the form of the abstract operator equa-
tion

KF—O,

o

(En)(N\) + () = f k(r,\, mn(r)dr + o(\) =o(\) + o(\)
0

=d(N\), (2)

where k(r,\,n)=mr2Q,..(r,\,n); F denotes the function
space of aerosol size distributions, and O denotes the ob-
servation space. Both F' and O are considered to be sepa-
rable Hilbert spaces. Note that 7,,,, in Eq. (1) is the mea-
sured term; it inevitably induces noise or errors. Hence,
the right-hand side of Eq. (2), d(\), is actually perturbed.
Keep in mind that the operation of Eq. (2) can be written
as

Kn+o=0+0=d. (3)

A. Ill-Posedness

Ill-posedness is a basic problem for inverse problems in
various applications (see, e.g., [16,31-34]). For the aerosol
particle size distribution function retrieval problem, the

Vol. 25, No. 2/February 2008/J. Opt. Soc. Am. A 349

ill-posed nature arises because (1) the model operator is
compact, and hence the inverse of small singular values of
the operator leads to unexpected huge values; (2) the ob-
servations contain noise; and (3) the number of observa-
tions is insufficient. These ill-posed characteristics pro-
duce a kind of jump in the solution space; i.e., instead of
being centered around the true solution, the results may
spread over the whole parameter space.

B. Regularization
Regularization is a necessary way to tackle the ill-posed
nature of the inversion process.

Both Phillips—Twomey regularization (see [9,10]) and
Tikhonov regularization (see [31]) belong to standard
smooth regularization methods. The general form is given
by

1
min §||Kn —d|?+vQ[n], 4)

where Q[n] is the Tikhonov stabilizer that assigns the
smoothness of the function n; »>0 is the regularization
parameter balancing the ill-posedness and smoothness.
In Phillips—Twomey regularization, Q[n] is chosen as a
quadratic form Q[n]=(Dn,n), where D is a preassigned
scale operator and is usually chosen as the sums of
squares of the second differences. In standard Tikhonov
regularization, Q[n] is chosen as a Sobolev norm function
of the form Q[n]=|n[%.. (see [12] for details).

With the regularization model, developing suitable so-
lution methods is very important.

3. THEORETICAL DEVELOPMENT

A. Regularizing Active Set Method
We consider the regularizing minimization problem

1 v
min Jy[n] = EHKn —d?+ §(Dn,n) (5)

under the constraint /<n<u, where v>0 is to be as-
signed and D is a positive (semi)definite operator. Recall
that a positive definite and (semi)definite operator T re-
fers to (Tx,x) >0 and (Tx,x) =0, respectively. We solve the
problem in the feasible set Sy:={n:l<n<u}.

Using the inner product, the objective functional can be
rewritten as a simple quadratic form

1 1
Joln]:= 5[(K*K+ vD)n,n]-(d,Kn) + §||d|\2 (6)

subject to n €Sy, where K" is the adjoint of K defined by
(x,Ky)=(K'x,y). Note that n is always nonnegative and
upper bounded; therefore, problem (5) is equivalent to

1
minJ[n]:= 5[(K*K+ vD)n,n] - (d,Kn) (7

subject to n € S1:={n:n=0}.
Thus, the goal of an optimization algorithm is solution
of the quadratic problem presented in Eq. (7), that is, the
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search for a point, n", in S; CF such that the objective
function J[n] is minimized in addition to satisfying the
set of constraints.

Before generating the algorithm, we explain a few
terms used in solving the quadratic program in Eq. (7).

Feasible point and feasible set: Any point n in F that
satisfies all constraints in S is said to be a feasible point.
The set of feasible points is referred to as the feasible re-
gion. If the constraints are inconsistent, then the problem
will be infeasible (e.g., minimize J[n] subject to n <[ or
n>u).

Active constraint: The constraint n € Sy is said to be ac-
tive at 7 if 7 lies on the boundary of the feasible region
and this boundary is formed by the constraints whose in-
dices are members of set S. Set S is referred to as the ac-
tive set. During the search process, some inequality con-
straints may become active, and their indices will also be
included in S.

Working set: The working set W, is a prediction of the
active constraints at the solution; i.e., a subset of the con-
straints in S is imposed as a set of equalities.

An active method is an implicit Newton-type method
for solving the constrained quadratic programming prob-
lem (7), which describes a method for identifying a correct
set of active inequality constraints and temporarily giving
up the remaining inequality constraints. Originally, the
method was designed for a well-posed quadratic program-
ming problem (e.g., [35-37]). We apply it to an ill-posed
aerosol particle size distribution function retrieval prob-
lem and solve a regularizing problem.

Given an iterate n; and the working set W,, we first
need to test whether n;, minimizes the quadratic func-
tional J[n] in the subspace defined by the working set. If
not, we compute a step s by solving an equality-
constrained quadratic programming subproblem in which
the constraints corresponding to the working set W, are
treated as equalities and all other constraints are tempo-
rarily ignored. So, given the iteration point n; and the
working set Wj,:={j € S:nJ,=0}, the subproblem in terms of
the step s,=n-n, can be expressed as

min Jsk[sk + nk] = §(Gsk5sk) + (gk’sk) +c,

st.s,=0, jeW, (8)

with G=K'K+vD, g,=Gn,-K'd, and c= %(Gnk,nk)
—(Kny,d). Since ¢ is a constant, at the kth iterative step,
we actually solve the equation

1
min Q[s;] = E(Gskysk) +(>Sh) >

st.s,=0, jeW,. 9)

We denote the solution of Eq. (9) by s,:. Note that the con-
straints in W, were satisfied at n;; they are also satisfied
atnp+ as;: for any value a. It is clear that there is a trivial
solution s;:_ 0. Therefore we suppose for the moment that
the optimal sk is nonzero. We need to decide how far to
move along the direction sk The strategy is that if n,
+sk is feasible with regard to all constraints, we set n;,q
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=nk+s;:; otherwise, a line search is made in the direction
sz to ﬁrid the best feasible point; i.e., we set n,.q
=ny+ays;,, where a, is the step size that satisfies
-
a=miny 1, min —— . (10)
jeWsh<0 Sk

If @, <1 in Eq. (10), then a new working set W, is con-
structed by adding one active constraint. This constraint
is defined by the index, say /, that achieves the minimum
in Eq. (10), and this index is added to the active set W,.
The procedure for adding constraints to W, is continued
until a point n,, is reached that minimizes the quadratic
functional over its current working set W,. It is easy to
recognize that this point is given at the trivial solution
sf'e:O and satisfies the optimality conditions for Eq. (9),

>\ =Gn,-Kd, (11)

jEW;

for some vector Lagrangian multiplier )\;, je W;:.

With the above preparation, we focus on the numerical
procedure for solving the problem. The first-order neces-
sary condition for Eq. (9) at Wz yields

Gs,+8,- > \; =0, (12)
jEW;;

s7/=0, jeW, (18)

N =0, jeW,. (14)

If we define the multipliers corresponding to the inequal-
ity constraints that are not in the working set to be zero,
then nz and }\; satisfy the Karush—-Kuhn-Tucker (KKT)
conditions for Eq. (7) with the constraint n € S, i.e.,

Gn,-K'd- X, \/=0, (15)
jeWy

n/=0, jeW, (16)

ng=0, jeS, je&W, (17)

and the multiplier )\ is adJusted to update the model. If
)\ =0 for all je W,, then nk is a strict minimizer; other-
Wlse if one of the multipliers )\J <0, the objective func-
tional @[s,] may be decreased by dropping this constraint;
i.e., we remove an index j corresponding to one of the
negative multipliers from the working set and solve a new
subproblem (9) for the new step.

Based on the above preparation, the regularizing active
set algorithm for the aerosol particle size distribution
function retrieval problem is given as follows:

Algorithm 3.1 (a regularizing active set algorithm).

Step 1. Compute a feasible starting point ng; set Wy to
be a subset of the active constraints at ng; give the ini-
tial regularization parameter vy,>0 and the positive
(semi)definite matrix D; set k:=0 and compute G
=K'K+D.

Step 2. Solve Eq. (9) to find s;; If s, # 0, GOTO Step 3;
Otherwise, GOTO Step 4.
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Step 3. Compute ¢, from Eq. (10); Set ny,.1=n;+ apsy; If
ap=1, GOTO Step 5; Otherwise, find [ ¢ W), such that
ni,/+ aks§e=0 and set Wj:=W, U{l};

Step 4. Compute the Lagrangian multipliers )\J,'e that
satisfy Eq. (11); set W,=W;; If N,=0 for all je W,,
STOP; output the solution n“=n;; Otherwise, set j
=argmin;w,Nj; ne1=n; set Wyi= W \{j}; GOTO Step
5;

Step 5. Set W,,1:=W,, k:=k+1 and update regulariza-
tion parameter v,; GOTO Step 2.

In Step 1, the computation of G=K K+ vD is not neces-
sary if the solution of Eq. (9) is by an iterative method,
say, the conjugate gradient method (see Appendix B),
since only matrix—vector multiplication is performed. The
numerical procedure for solving Eq. (9) is given in Appen-
dix B.

Remark. Note that our model is formulated in a regu-
larizing form and that the object functional J[n] is strictly
convex for proper choice of D and v; therefore, it is indeed
a regularizing algorithm with active set solution. Conver-
gence can be shown to follow similarly to the proof of the
well-posed case (see [35-37]).

B. Choosing the Scale Matrix D and the Regularization
Parameter v

To ensure the convexity of the quadratic programming
problem (7) and (9), it is necessary to choose the appropri-
ate regularization parameter v and the scale matrix D.
There are several ways to choose the matrix D; however,
it is pointed out in [12] that the following form of D pos-
sesses good numerical stability:

1 1
1+ﬁ _ﬁ 0 0
1 2 1
R TR °
D=|

1 2 1

° e TR
1 1
0 0 —ﬁ 1+ﬁ

with step size h,=(b-a)/(N-1).

For choosing the regularization parameter v, we em-
ploy the a posteriori technique developed in [24]; i.e., we
choose the regularization parameter v iteratively in a geo-
metric manner:

-1
=19 &,

where vy e (0,1) and is provided by the user: for example,
19=0.5; £€(0,1) is the factor of proportionality, and % is
the kth iteration. It is quite natural to use this parameter
selection rule, since in theory v, should approach zero as
k approaches infinity.

C. Aerosol Particle Size Distribution Function Retrieval
To retrieve the aerosol particle size distribution function
n(r), we need to solve linear system (3) for the AOT at dif-
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ferent wavelengths. We are interested in the particle size
in the interval [0.1,10] um. Note that a coarse difference
gridding (N <20) induces large quadrature errors; there-
fore we choose a relatively large difference gridding size,
N=200.

To perform the numerical computations, we apply the
technique developed in [38]; that is, we assume that the
actual aerosol particle size distribution function consists
of the multiplication of two functions A(r) and f(f): n(r)
=h(r)f(r), where h(r) is a rapidly varying function of r
that takes the form of a Junge size distribution, while f(r)
is more slowly varying. In this way we have

b
Taero(\) = f [k(r,\, )h(r)]f(r)dr, (18)

where k(r,\,7)=7r2Q,.(r,\,7) and we designate
k(r,\,nh(r) as the new kernel function that corresponds
to a new operator =:

(BENHN) = Taero(N). (19)

In the following, we consider the numerical perfor-
mance for solving the abstract model problem (18). For
simplicity of notation, the discretization of E is denoted
by the matrix K. We omit the discretization details (see
[12]) and assume that the original model is already in the
discrete form

Kf'= Taare- (20)

The explanations for the notation of K, }?, and others were
given at the end of Section 1.
Now, we can perform our algorithm for the problem

1 .
min _{|Kf - Taarol” + YDA (21)

subject to ]? =0, where v>0 is the regularization param-
eter and D represents the data to impose smoothness. Us-
ing the technique given in Subsection 3.B, the well-
posedness of the computational model is established.

4. NUMERICAL EXPERIMENTS

A. Synthetic Simulation
To verify the feasibility of our inversion method, we have
tested it by computer simulation. The simulation consists
of two steps. First, a synthetic extinction signal (input sig-
nal) is generated by computer according to Eq. (2) for a
given value of the particle size distribution 7,.,(r) (input
distribution) and for a given complex refractive index 7.
Then, the input signal is processed through our algo-
rithm, and the retrieved distribution is compared with
the input one.

In practice, an exact discretization of the right-hand
side 0 of Eq. (2) cannot be obtained accurately; instead a

perturbed version is obtained. Numerically, a vector d
should contain different kinds of noise. Here, for simplic-
ity, we assume that the noise is additive and is mainly
Gaussian random noise; that is, we have
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Fig. 1. Input and results retrieved with our inversion method for error level 5=0.005 and different complex refractive indices.

d =6+ & X rand(size(5)),

where §is the noise level in (0, 1) and rand(size(0)) is the
Gaussian random noise with the same size as o.

The precision of the approximation is characterized by
the root mean-square error

1 " [Tcomp()\i) - Tmeas()\i)]2

>

;izl [7'comp()\i)]2

rmse =

>

which describes the average relative deviation of the re-
trieved signals from the true signals. Here 7, refers to
the retrieved signals and 7,,,,, refers to the measured sig-
nals.

In our example, the size distribution function 7,.,,(r) is
given by (see [24])

Nre(T) = 10.5r735 exp(- ]_0—12,.—2).

The particle size radius interval of interest is [0.1,2] um.
The distribution function corresponds to a rapidly chang-
ing function A(r) times a slowly varying function f(r).
Since most measurements of the continental aerosol par-
ticle size distribution reveal that these functions follow a
Junge distribution (see [39,40])

h(r)=Cr+D,

where v is a shaping constant with typical values in the
range 2.0-4.0; therefore, it is reasonable to use an A(r) of
Junge type as the weighting factor of f(r). In this work, we
choose v*=3 and f(r)=10.5r"2 exp(-10712r-2). The form of
this size distribution function is similar to the one given
by [15], where a rapidly changing function A(r)=Cr=2 can
be identified, but it is more similar to a Junge distribution
for r=0.1 um. One can also generate other particle size

distributions and compare the reconstruction with the in-
put. The algorithm works well.

Now we give specifications of the initial input values in
Algorithms 3.1 and B.1 (Appendix B) for our theoretical
simulation: the initial regularization parameter v,=0.5
and the factors of proportionality ¢=0.5; then each v, is
iteratively calculated by the iteration formula given in
Subsection 3.B; 1 is a vector with components all equal-
ing 0.1; W, is chosen by the procedure in Appendix B; the
number of discretization nodes is N=200. In matrix D,
h,=(2-0.1)/(N-1) is the step size of the grids in [a,b].

First, the complex refractive index # is assumed to be
1.45-0.00:. Then we invert the same data, supposing that
7 has an imaginary part. The complex refractive index %
is assumed to be 1.45-0.03z, 1.50-0.007, and 1.50-0.02i.
Numerical illustrations are plotted in Figs. 1-3 with noise
levels 6=0.005, 0.01, 0.05 for the different complex refrac-
tive indices, respectively. Values of rmse for different
noise levels and different complex refractive indices are
given in Table 1. It can be clearly seen from Table 1 that
rmse is of the order of O(1075) to O(1076), which is smaller
than that from [24], where rmse values for different noise
levels and different complex refractive indices are of the
order of O(107%).

Our computer simulation indicates that our method is
not too affected by variation of the complex refractive in-
dex and noise. The results are comparable with or better
than those from [24], where a regularizing damped
Gauss—Newton method is used. Therefore we conclude
that our method is stable for retrieving aerosol particle
size distribution functions.

B. Discussion of Numerical Results
In this subsection, we choose the ground-based data mea-
sured by the CE 318 Sun photometer (for illustration of
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Fig. 2. Input and results retrieved with our inversion method for error level §=0.01 and different complex refractive indices.

the device, experimental site, and instrument specifica-
tions, please refer to [12]) to test the feasibility of the pro-
posed algorithm. We performed successive in situ experi-
ments using the CE 318 from October 17-31, 2005. The
meteorological data are provided by the Ying Tan Agricul-
tural Ecological Station of CERN (Chinese Ecosystem Re-
search Network).

In this numerical experiment, several days chosen dur-
ing October 17-31 are used for aerosol inversion. The par-
ticle size range [0.1,10] um is examined. For an illustra-

tion of the air mass history, AOT, and meteorological
description, we refer to [24]. By examination of the AOT
values in the morning and afternoon on October 17-31,
we found that the magnitudes of AOT values on October
17 and 18 are abnormally high. Hence they may not truly
reflect the aerosol distribution, and we choose data for
other days in this study.

The composition of the atmospheric aerosols from Yin
Tan consists of both small and large particles. Both the
scattering and the absorption of the particles play a major
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Fig. 3. Input and results retrieved with our inversion method for error level §=0.05 and different complex refractive indices.
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Table 1. Root Mean-Square Errors for Various
Noise Levels 6

Complex Refractive Index 7

o 1.45-0.00¢ 1.45-0.03; 1.50-0.00: 1.50-0.02:

0.005 7.0873x107% 7.3227x107% 6.6037x107% 6.7025x 1076
0.01 1.4175x107° 1.4646x1075 1.3208x107% 1.3405x107®
0.05 7.0875x107° 7.3226x107® 6.6039x10~® 6.7025x107°

19 Oct 2003
—-—-20 Oct 2005
24 Oct 20055

- ——26 Oct 2005
27 Oct 2005

O 31 Oct 20054

particle size distribution function n(r) (cm'z'um” )

2 L

0 1

aerosol particle radius (r) (um)

Fig. 4. Particle size distribution in October 2005 (mornings).

part. Therefore, a complex refractive index value of 7
=1.50-0.095; was used to perform the inversion (see
[24]). For theory and methods for determining a complex
refractive index 7, we refer to [41-43] and the references
therein for further information. Now we specify initial in-
put values in Algorithms 3.1 and B.1 for our numerical
simulations: all of the initializations are the same as that
in the synthetic simulation, except that in matrix D, A,
=(10-0.1)/(N-1) is the step size of the grids in [0.1,10].

The size distribution functions n(r) retrieved by our al-
gorithms are plotted in Fig. 4 for the chosen data from the
morning. The figure indicates that the aerosol particles do
not decrease rapidly. But it can be seen from the figure
that there is a quick jump of the particle size distribution
function in the radius interval [0.8,2.0] um. Outside that
region, the distribution changes smoothly. Therefore,
from our experiments and the local environment observa-
tion, we conclude that the aerosol particle size distribu-
tion of Ying Tan city is mainly small air particles and that
particles of a size near 1.0 um constitute the primary par-
ticles that can be a major source of air contamination. We
assume that the large particles of size [5.0,10.0] um are
composed mainly of clouds and ferric oxide, iron hydrox-
ide, and sulfur depositions. The results are consistent
with the local air conditions and our observations.

5. CONCLUDING REMARKS

In this paper, we investigate regularization and nonlinear
optimization methods for the solution of the atmospheric
aerosol particle size distribution function retrieval prob-
lem. We first formulate the regularized quadratic model
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by imposing nonnegative constraints, then develop an ac-
tive set method for solving the minimization problem.

We first performed theoretical simulations to verify the
feasibility of our inversion method. Our results show that
the proposed method is quite stable and insensitive to
complex refractive index # and noise levels.

Then we applied our proposed method to the inversion
of real extinction data obtained by adapting a commercial
Sun photometer, CE 318. The numerical experiments il-
lustrate that our new algorithm works well for the re-
trieval of aerosol particle size distribution functions.

Since the methods developed in this paper are used for
an ill-posed aerosol particle size distribution retrieval
problem, it may also be suitable for other ill-posed inverse
problems. But more investigation is needed because the
data and model are different.

APPENDIX A: KARUSH-KUHN-TUCKER
CONDITIONS

Consider the general inequality-constrained quadratic
programming problem

1
min Q(x) = ExTGx -pTx, (A1)
s.t. aiTx =b, i€k, (A2)
T .
a;x=b;, iel, (A3)

where G € R**" E and I are finite sets of indices, and p ,x,
and {a;} (i e EUI) are vectors with n elements.
The Lagrangian function is defined by

Lx,N=Q@) - X, Malx-b). (A4)

ieE cupl
If we define the active set S at an optimal point x” as
S(x")={i e EULalx"=b}, (A5)

then the KKT conditions for Eq. (A1) are

Gx" -p- D Na;=0, (A6)
ieS")

alx"=b;, forallie S, (AT)

alx"=b, foralliel\Sk", (A8)

)\; =0, foralli e INS(x). (A9)

If there are only m <n constraints, then Eq. (A1) can be
written as

1
min Q(x) = ExTGx -pTx, (A10)

st.Ax=b, (A11)

where A € R™*" is defined by A=[a,]7, i € E. The Lagrang-
ian function is defined by
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L(x,\) = Q(x) - \T(Ax - b). (A12)

The KKT conditions for Egs. (A10) and (A11) are given by

SO s

The above results are true for nonnegative constraints
x=0 and equality constraints x=0.

APPENDIX B: INSTRUCTIONS ON
IMPLEMENTING THE REGULARIZING
ACTIVE SET ALGORITHM

To use the algorithms described in this paper, we want to
mention some procedures and subroutines. We consider
the minimization problem

min J[n], st.nesS. (B1)
J[n] is a nonlinear function, given in Eq. (7), S={n:n
=0}. At the kth iteration, the search direction s;, is com-
puted from

min Q[s;,], st.s,=0,je W, (B2)
Q[s;] is a nonlinear function, given in Eq. (9). Then n;,
=np+a.s,. The gradient of Q[s,] is denoted grad,[@]
=G8k +8.

Initialization for choosing W,. The initial working set
W, is related to the initial point ng. Since the constraint is
nonnegative, therefore the components of W, can be cho-
sen as i if the ith component of n, equals zero, and as
zero, otherwise. This means that the ith constraint of W,
is active. The index i is from 1 to N.

Solving quadratic problem (9). Since we are interested
in finding the feasible direction s, it is unnecessary to
solve Eq. (9) accurately. We apply a feasible direction of
descent method with conjugate gradient solution. First,
we address the basic concept and procedures of feasible
direction of descent methods.

The fundamental concept of feasible direction methods
is that of the feasible direction of descent. If n € S, then
s#0 is called a feasible direction of descent for n if there
exists aypper such that for all a e (0, aypper) the following
two properties hold: (1) n+aseS, (2) Jn+as]<J[n].
Note that condition (2) is equivalent to requiring that
grad[J]Ts <O0.

The basic steps in feasible direction methods involve
solving a nonlinear programming subproblem to find the
direction vector and then finding the step size along this
direction by performing a constrained one-dimensional
line search. After updating the current point, the above
steps are repeated until the termination criterion is sat-
isfied.

Based on the above comments, the feasible direction of
Eq. (9) is the vector in null space. There are several ways
for solving the nonlinear programming subproblem, say,
the steepest descent method, conjugate gradient method,
and Newton and quasi-Newton method [35]. Because the
model is quadratic, we apply the conjugate gradient
method, which is fast and efficient.

Algorithm B.1. (Feasible conjugate gradient algorithm).
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Step 1 Input sy (such that ngeS); Compute grady[@]
:=(sg+8g and such that grady[@] is a feasible direction.
Step 2 If |grady[Q]|<e¢, output s*=s,, STOP; Other-
wise, set zo:=-grady[@],

poi=2bz, and setk:=1.
Step 3 Compute the next iteration points:

T
ay, = pp_1/[s}-1(Gsp_1)];
Sk = Sp-1t+ 21,

grad;[Q] := grad,_4[Q] + a}Gsj(such that grad,[Q]

is a feasible direction),
Pr = gfadk[Q]T grad,[@],
Br = pr/Pr-1

zj, = — grad;,_1[Q] + Bz_1.

Step 4 If ||grad,[@]||< € or k& exceeds the maximum it-
erative steps, output m,, STOP; Otherwise, set k
:=k+1, GOTO Step 3.

In our calculation, we choose the initial values such
that sy is a vector with components all equaling 0.1, €
=1.0x 1078, With the above instructions, users can com-
bine Algorithms 3.1 and B.1 and repeat the experiment
easily.
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