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a b s t r a c t

Image deblurring problems appear frequently in astronomical image analysis. For image
deblurring problems, it is reasonable to add a non-negativity constraint because of the
physical meaning of the image. Previous research works are mainly full-space methods,
i.e., solving a regularized optimization problem in a full space. To solve the problem more
efficiently, we propose a subspace method. We first formulate the problem from full space
to subspace and then use an interior-point trust-region method to solve it. The numerical
experiments show that this method is suitable for ill-posed image deblurring problems.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Astronomical images obtained are usually corrupted or distorted by blurring and noise [1,2]. The image may be degraded
by sensor noise, misfocus of CCD camera, non-uniform motion, atmospheric aerosols and random atmospheric turbulence. A
key problem in image deblurring is to restore the image by solving a blurring model and removing noise. It indicates that the
power distribution in the image plane due to a point source in the object plane can be formulated as

hnði; jÞ ¼ hði; jÞ þ nði; jÞ ¼ kði; jÞHf ði; jÞ þ nði; jÞ; ð1Þ

where, hði; jÞ denotes the recorded blurred image, f ði; jÞ denotes the original object. Their unique relation in the spatial do-
main is given by the two-dimensional point spread function (PSF) kði; jÞ. w is the convolution operator, i and j are the spatial
coordinates and nði; jÞ denotes an additional noise term. The above expression is commonly modeled as a first kind integral
equation of the form

hnðx; yÞ ¼ hðx; yÞ þ nðx; yÞ ¼
Z Z

R2
kðx� n; y� gÞf ðn;gÞdndgþ nðx; yÞ ¼ Kf ðx; yÞ þ nðx; yÞ: ð2Þ

The image restoration problem is recovering f from h and the kernel k.
In digital image restoration, a discrete model of (2) is usually formulated by the linear system

hn ¼ hþ n ¼Kf þ n; ð3Þ

where K 2 RN2�N2
; f; h; n 2 RN2

. But we cannot expect to solve this linear system by algebraic strategy easily, because the
matrix K is usually badly conditioned. In addition, the noise cannot be ignored when the observed image hn is recorded.

Due to the ill-posedness of (2) and the discrete ill-posedness of (3) regularization is needed in order for the establishment
of well-posedness to be satisfied. For us, this will require a variational formulation of the problem. The most common exam-
ple of a variational formulation of (2) or (3) is the least squares problem
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arg minf Wðf Þ :¼ 1
2
kKf � hnk2 ð4Þ

or

arg minfWðfÞ :¼ 1
2
kKf � hnk2

: ð5Þ

But because of the compactness of the operator, this formulation is also a (discrete) ill-posed problem. Regularization tech-
niques for least squares problem have been extensively studied [3,4]. For our problem, we only consider the discrete least
squares problem (5). The standard Tikhonov regularization form is given by

min kKf � hnk2 þ aCðfÞ; ð6Þ

where Cð�Þ is a function whose role is to give some penalization to the unknown f. There are a lot of tricks for choosing Cð�Þ
(see [5,6] for smooth regularization, [7–9] for nonsmooth regularization and their applications and [10,11] for sparse regu-
larization and their applications). For example, CðfÞ can be defined as ðLf; fÞ, where L is a scale operator which can be chosen
as a positive definite or positive semi-definite matrix. Usually L is chosen as a sparse matrix for changing little of the spec-
trum of the original kernel. In (6), a > 0 is the so-called regularization parameter which plays a major role in regularizing the
ill-posedness. The value of a is positive and will be typically small. But the choice of an appropriate a is a difficult task, which
is usually related to the spectrum of the discrete kernel K and the unknown noise level in h [5]. Methods for solving ill-
posed image deblurring problems include SVD-based (singular value decomposition) direct methods [2], Ricardson-Lucy
(EM) approach and a generalization [12–14], projected Landweber iterative method [1], simple least squares method [15]
and total least squares method [16], Newton’s and quasi-Newton’s methods [4], gradient methods and various precondition-
ing technique and different applications [17,4,18]. The conjugate gradient method has proved to be an efficient iterative reg-
ularization method for recovering the correct image from its degradation [19]. Trust-region methods have recently shown
another useful regularization tool for image restoration [20–22] and have proved to be a kind of regularization method
[20,23]. These methods require solving a trust-region subproblem in each inner iteration and accepting a new trial step with-
in its trust region. Recently, subspace trust-region methods were developed for solving large scale nonlinear programming
problems (e.g. [24,25]), but attentions are paid mainly on well-posed problems. It is clear that these methods have potential
applications in inverse problems. Iterative methods like steepest descent method and Landweber method, though applicable,
are quite expensive, more advanced gradient methods need to be investigated [26].

In practice, the vector f records the image pixel values, so the component of f must be nonnegative. Therefore, we refor-
mulate the problem by imposing the non-negativity constraints. This is already considered by several researchers [26–
31,11]. The non-negativity constrained image deblurring problem is described as

min WðfÞ :¼ 1
2 kKf � hnk2

;

s:t: f P 0:
ð7Þ

We denote the feasible set of (7) by F ¼ ff : f P 0g, and its interior by intðFÞ ¼ ff : f > 0g. The remaining task is how to
solve (7) efficiently and accurately.

The research reported in the literature on ill-posed image deblurring is based on solving the inverse model in a full space,
i.e., the iterative steps are in RN2

, not in a lower dimensional space Rp; p < N2. Therefore, a question arises of whether we can
reduce the original problem from full space to a lower dimensional space (subspace). This paper will address this problem.
The contribution of the paper lies in that we propose to apply a subspace interior-point trust-region method to solve (7).
Though the idea is originated from optimization theory, it is the first time to implant this idea into image deblurring prob-
lem. In addition, for the linear inverse problem oriented quadratic programming model, we propose a new trust-region form
for modifying trust-region radius and accepting trust region trial step. The great advantage of the method is that users can
develop different kinds of subspace methods to carry out more efficient scientific computing.

This paper is organized as follows: in Section 2.4, a subspace interior-point trust-region algorithm for the non-negative
image restoration is presented. The details of the construction of the subspace are described in Section 2.5. In Section 3, the
numerical experiments based on the proposed method are reported. Some concluding remarks are given in Section 4. Finally,
appendix is given to prove the convergence of the proposed method.

Throughout the paper, we use the following notations: ‘‘:¼” denotes ‘‘defined as”, ‘‘arg min” denotes ‘‘minimization for an
argument”, ‘‘max” and ‘‘min” denote ‘‘maximizing” and ‘‘minimizing” some functional, respectively, ‘‘AT ” denotes the trans-
pose of matrix A, ‘‘s.t.” denotes ‘‘subject to”, ‘‘intðFÞ” denotes the interior of F, ‘‘ diagð�Þ” denotes a diagonal matrix and
‘‘lim inf” of a sequence is the infimum of the set of all subsequence limits of the sequence.

2. Subspace method

2.1. Subspace trust-region model

The problem (7) can be regarded as a special case of nonlinear programming with simple bounds. The interior-point trust-
region methods for this type problem were investigated by many authors [25,24,32–34] and proved to be robust and effi-
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cient. But for the large scale problems, subspace techniques should be involved. In [24], comprehensive study and numerical
experiments were given for well-posed nonlinear programming problems. In this paper, we study applying it to ill-posed
problems.

The first order Karush–Kuhn–Tucker optimality condition for (7) can be expressed as

rWðfÞ � k ¼ 0;

kif i ¼ 0; i ¼ 1; . . . ;N2

k P 0; f P 0;

8><>:
where rWðfÞ ¼KTðKf � hnÞ is the gradient of WðfÞ in (7). This system can be reduced to

DðfÞrWðfÞ ¼ 0; ð8Þ

where DðfÞ is a diagonal matrix whose diagonal elements are given by

ðDðfÞÞii ¼
f i if ðrWðfÞÞi > 0;
1 if ðrWðfÞÞi 6 0:

�
ð9Þ

Our subspace trust-region model for (7) is

min UðsÞ :¼ gT
k sþ 1

2 sTKTKs;

s:t: kD�1
k sk 6 Dk;

s 2 Sk;

ð10Þ

where gk ¼KTðKfk � hnÞ; Dk is defined as DðfkÞ which is a scaling matrix to restrict the step s, Dk is the radius of the trust
region and Sk is a subspace which is chosen so that (10) can be solved cheaply.

2.2. Computation of a trial step

We denote the solution of (10) as str
k and define �str

k as

ð�str
k Þi ¼

�rkðfkÞi if ðstr
k Þi 6 �rkðfkÞi;

ðstr
k Þi if ðstr

k Þi > �rkðfkÞi;

(
ð11Þ

where rkðfkÞ :¼maxfr;1� kstr
k kg and r 2 ð0;1Þ. Thus �str

k can be regarded as a truncated projection of str
k onto intðFÞ with a

small step back in order to make the step feasible and in the interior.
Except for str

k , the scaled gradient �D2
k gk is also a good direction which can be used to generate the trial step. The

reason for using �D2
k gk instead of �gk is that the affine scaling matrix Dk takes a crucial role in the simple bound con-

strained problems. For the components f i which are approaching the ‘‘correct” bounds, the sequence vectors f�D2
k gkg

become increasingly tangential to these bounds. Hence, the bounds will not prevent a large stepsize along f�D2
kgkg.

For the components f i which are approaching the ‘‘incorrect” bounds, f�D2
kgkg goes away from these bounds in relatively

large angles so that we can get a sufficient descent along the direction f�D2
kgkg. More details about the affine scaling

matrix can be found in [24].
We define the minimizer of (10) in F along �D2

kgk as sc
k, i.e.,

sc
k ¼ arg minfUðsÞ : s ¼ �sD2

k gk; kD
�1
k sk 6 Dk; fk þ s 2Fg: ð12Þ

In practical implement, the step may need to be reduced in order to guarantee all fk staying in intðFÞ. So we define the Cau-
chy step �sc

k as follows:

�sc
k :¼ hksc

k; ð13Þ

where hk ¼ 1 when fk þ sc
k 2 intðFÞ and hk ¼maxfh;1� ksc

kkg; h 2 ð0;1Þ otherwise.
Then we can generate the trial step sk by �str

k and �sc
k. The following condition should be imposed to sk to guarantee the

global convergence of the algorithm:

qc
k :¼ UðskÞ

Uð�sc
kÞ

P bc; ð14Þ

where bc 2 ð0;1Þ.
We use a line search technique to find sk satisfying (14). The line segment is denoted by /ðtÞ. Because �str

k and �sc
k are all

good directions for (7), we can apply the line search along the line segment which is the convex combination of �str
k and

�sc
k, i.e.,

/ðtÞ ¼ t�str
k þ ð1� tÞ�sc

k: ð15Þ

The line search algorithm for finding the trial step can be presented as Algorithm 2.1.
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Algorithm 2.1. Compute the trial step

[Step 1] Compute str
k for the subproblem (10) and set �str

k and �sc
k by (11) and (13), respectively. Set t ¼ 1; iter ¼ 1. Give

bc; c 2 ð0;1Þ and integer Maxiter;
[Step 2] For iter ¼ 1 : Maxiter
� Compute sk ¼ t�str

k þ ð1� tÞ�sc
k and qc

k by (14);
� If qc

k < bc , set t :¼ ct; iter :¼ iter þ 1;
� Otherwise stop;

[Step 3] Set sk ¼ �sc
k and stop.

We give some explanations to this algorithm. First, we test whether (14) holds when sk ¼ �str
k , i.e., t ¼ 1. If (14) does not

hold, we reduce t so that the step skðtÞ ¼ t�str
k þ ð1� tÞ�sc

k is more and more close to �sc
k. Finally, if Step 3 is implemented, which

shows that (14) does not hold when reduce t in certain times, then we set sk ¼ �sc
k so that (14) holds naturally. In addition, in

Step 1, the cost of computing str
k must be accounted. For large scale problem, we solve it by converting a full space problem to

a lower dimensional space. Details are given in Algorithm 2.3.

2.3. A new form of trust-region scheme for quadratic programming

Trust-region methods are usually formulated for non-quadratic nonlinear programming problem. Consider, for example,
an unconstrained non-quadratic minimization problem minf2Rn CðfÞ. The trust-region method requires solving a trust region
subproblem

min
s

� ðsÞ :¼ ðgðfÞ; sÞ þ 1
2
ðHðfÞs; sÞ;

s:t: ksk 6 D;

where gðfÞ and HðfÞ denote the gradient and Hessian of CðfÞ, respectively. In each step, a trial step s is computed and decided
whether it is acceptable or not. The decision rule is based on the ratio q between the actual reduction in the objective func-
tional and the predicted reduction in the approximate model. And the trust-region iterative step remains unchanged if q 6 0,
where q ¼ AredðfÞ

PredðfÞ, and AredðfÞ and PredðfÞ are defined by CðfÞ � Cðf þ sÞ and � ð0Þ � � ðsÞ, respectively.
For the model (5), since it is in a quadratic form, the ratio q is always equal to 1. This means the trial step s, no matter it is

good or not, will be always accepted. But the model is ill-posed, this seems to be unreasonable. To overcome this shortcom-
ing, we propose the following modified trust-region scheme when the model is a quadratic programming problem. We note
that the approximate accuracy is characterized by the discrepancy between the observation and the true data; therefore
variations of the norm of the discrepancy may reflect the degree of approximation. Based on these considerations, we pro-
pose to accept or reject the trial step sk at the kth step by the ratio qk ¼

Wðfkþ1Þ
WðfkÞ

¼ WðfkþskÞ
WðfkÞ

, where Wðfkþ1Þ and WðfkÞ are the
reductions in norm of the discrepancy at ðkþ 1Þst and kth steps, respectively.

2.4. A subspace interior-point trust-region method

After getting a trial step sk satisfying (14), we decide to accept or reject sk. Our rule is whether the function value
Wðfk þ skÞ has some reductions compared to WðfkÞ. We denote the ratio of Wðfk þ skÞ and WðfkÞ as qf

k:

qf
k ¼

Wðfk þ skÞ
WðfkÞ

: ð16Þ

In our algorithm, we will accept sk if qf
k < g and reject it otherwise, where g 2 ð0;1Þ. The reason we adopt this stopping rule

is that (16) uses discrepancy between the observation and the model, which is more physically meaningful [18].
It is worth noting that �str

k will tend to the scaled gradient direction when the radius of the trust region Dk approaching
zero. So the update of Dk is also important when generate the good trial step. But Dk should not be expected to restrict
the point stay interior. In fact, it is important to allow the trial step past the boundary of the trust region as long as it is still
satisfying the bound constraints. In our algorithm, we use a similar approach proposed in [34] to update Dk.

Based on the above discussions, we describe our interior-point trust-region algorithm as Algorithm 2.2.

Algorithm 2.2. A subspace interior-point trust-region algorithm

[Step 1] Give �; bc; c0 2 ð0;1Þ;1 ¼ l2 P l1 P g > 0; c2 P c1 > 1; x0 2
R
ðFÞ;D0 > 0 and set k :¼ 0.

[Step 2] If kDkgkk < �, stop.
[Step 3] Compute WðfkÞ and gk; Define the quadratic model U as (10).
[Step 4] Compute the trial step sk by Algorithm 2.1.
[Step 5] Compute qf

k by (16). If qf
k < g then set fkþ1 :¼ fk þ sk. Otherwise fkþ1 :¼ fk.

2362 Y. Wang, S. Ma / Applied Mathematics and Computation 215 (2009) 2359–2377
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[Step 6] Set k :¼ kþ 1; Update Dk as follows and then go to Step 2.
� If qf

k P l2 then Dkþ1 ¼ c0Dk.
� If l1 6 qf

k < l2 then Dkþ1 2 ½Dk; c1Dk�.
� Otherwise, Dkþ1 2 ½c1Dk; c2Dk�.

It deserves attention that in Algorithm 2.2, adjusting the trust-region radius Dk requires 1 ¼ l2 P l1 P g > 0 and
c2 P c1 > 1. These requirements are necessary to guarantee convergence. In practical simulations, the requirements can
be relax. For example, we can let l2 less than but toward 1 and l1 < l2. Typical values are:
g ¼ l1 ¼ 0:95;l2 ¼ 0:9995; c0 ¼ 0:8; c1 ¼ 1:5 and c2 ¼ 2:0.

It is necessary to establish the convergence property of the proposed trust-region algorithm to the ill-posed quadratic
programming problem. Before we get the main convergence result, some important assumptions should be declared as [34]:

(AS.1) Given an initial point f0 2F, it is assumed that L is compact, where L is the level set, i.e.,
L ¼ ff : f 2F and WðfÞ 6 Wðf0Þg.

(AS.2) There exists a positive scalar vg such that for f 2L; kgðfÞk1 < vg.

We will prove the following theorem:

Theorem 2.1. Assume that (AS.1), (AS.2) hold and fskg satisfies (14), and since W : RN2
! R is continuously differentiable on F,

then

lim inf
k!1

kĝkk ¼ 0: ð17Þ

Proof. The proof is shown in the Appendix. h

The next theorem establishes that fDkgkg converges to zero.

Theorem 2.2. Assume (AS.1) and (AS.2) hold and ffkg is generated by Algorithm 2, and since gðfÞ ¼ rWðfÞ is continuous on F,
then

lim
k!1
kDkgkk ¼ 0:

Proof. The proof is shown in the Appendix. h

2.5. Solution in two-dimensional subspace trust region

In this subsection, we will give the choice of subspace Sk and the algorithm to solve (10) cheaply. Firstly, the scaled gra-
dient �D2

kgk should be included in the subspace. Secondly, Sk should contain a sufficiently accurate approximation to the
Newton direction �ðKTKÞ�1gk. Due to the large scale of the matrix, we should get an inexact Newton step sN

k by approxi-
mately solving the equation

KTKs ¼ �gk ð18Þ

with accuracy gk:

KTKsN
k ¼ �gk þ rk; such that krkk=kgkk 6 gk: ð19Þ

Hence we can select Sk as the two-dimensional subspace

Sk ¼ spanfsN
k ;�D2

k gkg: ð20Þ

Eq. (18) can be solved by conjugate gradient method so that all the cost of the algorithm is matrix–vector multiplication,
which can be operated efficiently using the technique given in Section 3.2.1. It deserves attention that the step sN

k lies in
a subspace spanned by Sr :¼ fgk;Hgk;H

2gk; . . . ;Hrgkg for some r, where H ¼KTK. Here r is unknown when formulating
subspace Sr in each iteration. While by using conjugate gradient method to approximately solve Eq. (18), we do not need
to know r and we always get an inexact Newton direction which lies in some subspace Sr .

The remaining work is how to solve the subspace trust region problem (10) efficiently. We define

s1 ¼ sN
k =ksN

k k ð21Þ

and compute

s2 ¼ �D2
kgk þ ððD

2
k gkÞ

T s1Þs1 ð22Þ

Y. Wang, S. Ma / Applied Mathematics and Computation 215 (2009) 2359–2377 2363
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and then we set s2 ¼ s2=ks2k and S ¼ ½s1; s2� 2 RN2�2. Then for any vector s 2 Sk, there exists a two-dimensional vector
a ¼ ½a1;a2�T 2 R2 satisfy s ¼ Sa. Hence, problem (10) can be formulated as a two-dimensional trust-region subproblem:

min UðaÞ :¼ gT
k Saþ 1

2 aT STKTKSa

s:t: kD�1
k Sak 6 Dk:

ð23Þ

With the above description, we can present the following algorithm for solving the subspace trust-region model (10) in
detail:

Algorithm 2.3. Solving the subspace trust-region problem

[Step 1] Compute s1 and s2 by (21) and (22), respectively;
[Step 2] Set s2 ¼ s2=ks2k and S ¼ ½s1; s2� 2 RN2�2.
[Step 3] Solve the two-dimensional trust-region subproblem (23) to get a.
[Step 4] Set str

k ¼ Sa.

3. Numerical experiments

3.1. Long slit PSF blurred one-dimensional ill-conditioning problem

The infinite long slit PSF can be written as the following function [35]

kðh;/Þ ¼ ðcos hþ cos /Þ sin r
r

� �2

; ð24Þ

where

r ¼ pw
k

sin hþ sin /ð Þ;

h is the angle of emergence or observation which specifies the location of the image point, / is the angle of incidence which
specifies the location of the source, w is the width of the slit, k is the wavelength. The illustration of the discrete PSF is given
in Fig. 1. The input signal is assumed to be the superimposed Gaussian

f ð/Þ ¼ expð�c1ð/� /aÞ
2Þ þ cð�c2ð/� /bÞ

2Þ:

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 1. The long slit PSF image.
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Assuming that h;/ 2 � p
2 ;

p
2

� �
, we choose c ¼ 1; c1 and c2 as high as 4, and /a and /b as small as � 1

2. The true right-hand side h
is obtained by integral:

hðhÞ ¼
Z p

2

�p
2

kðh;/Þf ð/Þd/:

After discretization, we obtain the discrete matrix–vector multiplication: Kf ¼ h, where K 2 RM�N; f 2 RN and h 2 RM . We
choose M ¼ N ¼ 200, which leads to the condition number of the matrix K is 2:5631� 1019. Hence the problem is severely
ill-conditioning. To test the robustness of our method, we add noise to h. And the noise level is denoted by level, i.e.,

n ¼ level
M
khk � randnðM;1Þ;

where M is the size of the image, randnðM;1Þ is a Gaussian normal distributed random vector, and we set randn(‘state’,0) in
our Matlab codes to ensure the same random vector is generated every time.

We set the parameters in Algorithm 2.1 and Algorithm 2.2 as follows: r ¼ 0:9995; h ¼ 0:9995; c ¼ 0:9, Maxiter=10,
bc ¼ 0:1;l1 ¼ g ¼ 0:95;l2 ¼ 0:9995; c0 ¼ 0:8; c1 ¼ 1:5; c2 ¼ 2:0; f0 is the initial guess value with components all 0.5, and
D0 ¼ kf0: � g0k.

The noise added to h is with levels: level = 0.005, 0.01 and 0.05. The input, blurred and restored images are shown, respec-
tively, in Figs. 2–8. It indicates from these figures that the unknown signal is well recovered for not too large noise level. For
large noise level, there are tails on the boundary. In such case, other regularizers, say, nonsmooth regularizer [4] for control-
ling jump on the boundary, may be incorporated into the model, but this beyond our study in this paper. The precision of the
approximation is characterized by the root mean-square error (rmse)

rmse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM

i¼1

ðhnðhiÞ � hðhiÞÞ2

ðhnðhiÞÞ2

vuut ; ð25Þ

which describes the average relative deviation of the recovered signals from the true signals. For the first case, it needs six
steps to reach the convergence with rmse = 0.0016. For the second, it needs six steps to reach the convergence with
rmse = 0.0013. For the third, it needs four steps to reach the convergence with rmse = 0.0053. Therefore, we conclude that
our proposed method is applicable for ill-conditioned deblurring problems.

3.2. Single channel image deblurring

For astronomical image deblurring problems, the reason for causing blur is various [1,2]. To show the efficiency of our
method, we only consider a simple case, i.e. the PSF is modeled by Gaussian and the image is formed in a single channel.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 2. The noise-free input one-dimensional image.
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Actually, the Gaussian function simulates well about the convolution process of the true signal with the PSF operator. Both
the blurring by aerosols and turbulence can be taken as Gaussian. The forward model is in the form

kðx; yÞ ¼ 1
2pr2 exp �1

2
x2 þ y2

r2

� �� �
; ð26Þ

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10−0.5

10−0.4

10−0.3

10−0.2

10−0.1

100

100.1

100.2

true
noisy

Fig. 3. The true and blurred images for noise level equaling to 0.005.
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10−0.5

10−0.4

10−0.3
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10−0.1
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100.1

100.2

true
noisy

Fig. 4. The true and blurred images for noise level equaling to 0.01.
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where r is a positive constants. The larger we choose r, the more f gets smoothed. So by the same argument, the smaller we
choose r, the more the convolution result resembles f.

3.2.1. MVM: matrix–vector multiplication
The main cost of our algorithm is the matrix–vector multiplication, so an efficient algorithm to compute the matrix–vec-

tor multiplication should be investigated.
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Fig. 5. The true and blurred images for noise level equaling to 0.05.
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Fig. 6. Restored images for � ¼ 10�3 and level = 0.005.
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We suppose the PSF kernel function in (2) is spatially invariant, i.e., the kernel is separable and can be reformulated as

kðx� n; y� gÞ ¼ kxðx� nÞkyðy� gÞ: ð27Þ

Numerically, assume that the discretization of kx and ky are Kx and Ky respectively, then the matrix K is a tensor of Kx and
Ky, i.e., the Kronecker product of Kx and Ky,
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Fig. 7. Restored images for � ¼ 10�3 and level = 0.01.
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Fig. 8. Restored images for � ¼ 10�3 and level = 0.05.
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K ¼Kx 	Ky: ð28Þ

Kx and Ky are all Toeplitz, so K is a block Toeplitz matrix with Toeplitz blocks (BTTB), i.e., the N2 � N2 matrix K has the
block form

K ¼

K0 K�1 � � � K1�N

K1 K0 K�1
..
.

..

. . .
. . .

.
K�1

KN�1 � � � K1 K0

0BBBBB@

1CCCCCA; ð29Þ

where each block Kj is an N � N Toeplitz matrix. For a Toeplitz matrix, it can be determined by its first row and first column
elements. By extending the BTTB into a block circulant with circulant blocks matrix (BCCB), we can use the two dimensional
discrete Fourier transform to compute the matrix vector multiplication [4,18].

Since K can be represented by a Kronecker product of two low order matrices as K ¼ A	 B with A 2 Rm�m;B 2 Rn�n. For
the blurring process, A and B are usually taken as sparse banded matrices [2], which means only pixels within a distance
band � 1 contribute to the blurring. Hence we can use a very economic algorithm proposed in [21,22]. In these papers,
the authors only considered the band which is equal to 2 and 3. In this paper, we extend their results to any band value.

Suppose band ¼ p, then A;B are 2p� 1 diagonal matrices. Pixels within a distance p� 1 of A and B contribute to the blur-
ring. The different elements of K are only C ¼ Að1 : p;1Þ 	 Bð1 : p;1Þ. The resulting matrix K is a sparse BTTB with each
block a 2p� 1 diagonal matrix. If we define

A ¼

a0 a1 � � � ap�1 � � � 0

a1 a0
. .

. . .
. . .

.
0

..

. . .
. . .

. . .
. . .

.
ap�1

ap�1
. .

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

a0 a1

0 0 ap�1 � � � a1 a0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
; B ¼

b0 b1 � � � bp�1 � � � 0

b1 b0
. .

. . .
. . .

.
0

..

. . .
. . .

. . .
. . .

.
bp�1

bp�1
. .

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

b0 b1

0 0 bp�1 � � � b1 b0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
;

then C :¼ ða0b0; a0b1; . . . ; a0bp�1; . . . ; ap�1b0; ap�1b1; . . . ; ap�1bp�1ÞT . Thus, we can write the matrix–vector multiplication
y ¼ ðA	 BÞx as follows:

y ¼

0
..
.

0
ap�1Bx1

ap�1Bx2

..

.

ap�1Bxm�pþ1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
þ � � � þ

0
a1Bx1

..

.

a1Bxm�1

0BBBB@
1CCCCAþ

a0Bx1

a0Bx2

..

.

a0Bxm

0BBBB@
1CCCCAþ

a1Bx2

..

.

a1Bxm

0

0BBBB@
1CCCCAþ � � � þ

ap�1Bxp

ap�1Bxpþ1

..

.

ap�1Bx2p�1

0
..
.

0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
;

where

x ¼

x1

x2

..

.

xm

0BBBB@
1CCCCA; xi ¼

xi1

xi2

..

.

xin

0BBBB@
1CCCCA:

Then each component of y, for example a0Bx1, can be evaluated as,

a0bp�1

0
..
.

0
x1p

..

.

x1;n�pþ1

0BBBBBBBBBB@

1CCCCCCCCCCA
þ � � � þ a0b1

0
x11

..

.

x1;n�1

0BBBB@
1CCCCAþ a0b0

x11

x12

..

.

x1n

0BBBB@
1CCCCAþ a0b1

x12

..

.

x1n

0

0BBBB@
1CCCCAþ � � � þ a0bp�1

x1p

..

.

x1n

0
..
.

0

0BBBBBBBBBB@

1CCCCCCCCCCA
;

so to others. Thus the matrix–vector multiplication reduces a lot.
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Suppose band = 5, then A;B are nine diagonal matrices. Pixels within a distance 4 of A and B contribute to the blurring. The
different elements of K are only C ¼ Að1 : 5;1Þ 	 Bð1 : 5;1Þ. The resulting matrix K is a sparse BTTB with each block a five
diagonal matrix. For the nine diagonal matrices, the cost of the MVM computation would be 25mn. Whereas for FFT based
matrix–vector computation, the cost is Oð5mnlog2mnÞ, which is greater than 25mn for banded matrix–vector multiplication
for large m and n, say, m ¼ n ¼ 256; 512 or more.

3.2.2. Numerical simulation
In this section, we give examples on the restoration of atmospheric image. The blurring process is modeled by a Gaussian

point spread function:

kðx� n; y� gÞ ¼ 1
2pq�q

exp �1
2

x� n
q

� �2

� 1
2

y� g
�q

� �2
 !

: ð30Þ

In our test, we choose q ¼ �q ¼ 0:7. And the noise level is denoted by level, i.e.,

n ¼ level
N
khk � randnðN2;1Þ;

where N is the size of the image, randnðN2;1Þ is a Gaussian normal distributed random vector, and we set randn(‘state’,0) in
our Matlab codes to insure the same random vector is generated every time. It is clear that our method is also applicable for
other image restoration problems induced by other blurring operator. Users may readily make codes according to our
description of the algorithms.

The parameters in Algorithm 2.1 and Algorithm 2.2 for two-dimensional case are the same as that in one-dimensional
numerical case except that c0 ¼ 0:6; c1 ¼ 1:1; c2 ¼ 1:5; f0 is the initial guess value with components all ones, and
D0 ¼ kf0: � g0k.

The experiments were performed on a personal Pentium (R) computer with CPU 2.80 GHz. The image for testing is a sin-
gle channel image, cropland, with size 256� 256. Hence the resulting PSF matrix is a BTTB with size equaling
65;536� 65;536. The true image is plotted in Fig. 9. To simulate the blurring, we choose the band which is equal to 5. This
induces a severe atmospheric or turbulence blurring. The condition number of the discrete Kronecker kernel K is equal to
1:2985� 1030. Therefore, the matrix K is very badly conditioned. On occasion that the weather is not too bad, one may
choose a small band value. The noisy blurred images for different noise levels are plotted in Figs. 10 and 11. The deblurred
restored images by fast subspace algorithms are illustrated in Figs. 12 and 13.

As in the one-dimensional simulation, we also compute the root mean-square error (rmse)

rmse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

X ðhð:Þ � hnð:ÞÞ2

ðhnð:ÞÞ2

s
;
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Fig. 9. The noise-free remotely sensed image.
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where h(:) refers that the operation is performed point to point. The numerical results by our subspace interior-point trust-
region algorithm for different noise levels with different accuracy are listed in Table 1. In this table, the iterative steps refer to
the recorded steps in Algorithm 2.2.

To show the efficiency of our proposed method, we make a comparison of this method with the projected BB (PBB) meth-
od which was developed recently for ill-posed problems in [26]. The PBB method is reported that it is more efficient than the
well-established GPCG method. Therefore, this is a fair comparison. The results are listed in Table 1.
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Fig. 10. The blurred images for noise level level = 0.005.
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Fig. 11. The blurred images for noise level level = 0.01.
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It indicates from the computational results that our subspace method with the fast MVM algorithm is very fast for image
deblurring problem. It generates comparable results as in PBB method. Certainly, our method is suitable for other blurring
problems which are in the form of banded and sparse matrix–vector multiplication. Therefore, we conclude that our subspace
method may be a proper choice for large scale image restoration with spatially invariant response.
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Fig. 12. Restored images for � ¼ 10�3 and level = 0.005.
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Fig. 13. Restored images for � ¼ 10�3 and level = 0.01.
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Remark 3.1. For any iterative solution methods, the proper stopping rule is a critical choice. Especially for image deblurring
problems, the ill-posed nature indicates that there exists a saturation state for iterations [6], which means, at such a state,
further iterations are unnecessary. In our algorithm, the parameter � plays such a role. A smaller � yields more accurate
results, however brings more steps of computations; a larger � makes the convergence quickly but with larger accurate
results. In our example, we choose � ¼ 1:0� 10�3. Empirically, we recommend to choose � ¼ 1:0� 10�3 or � ¼ 1:0� 10�2,
but less than or equal to 1:0� 10�4.

3.3. Discussions

One may raise a question that there are about 10 parameters need to be chosen before using the algorithm, which may
reduce the applicability of the algorithm. We want to point out that the values of these parameters are mainly used for prove
the convergence of the proposed algorithm. Practically, the choice can be loose. We give a table for typical choices of these
parameters: These parameters work efficiently for most of ill-posed inverse problems. Therefore, the algorithm developed in
this paper is readily used for practical applications.

We want to point out that the numerical examples given in this paper are the long slit PSF and the Gaussian PSF. It is clear
that the proposed algorithm is also suitable for other image recovering problems induced by other ways of blurring as long as
we recall that the formation of the optimization model is a nonnegative quadratic programming problem (see Table 2).

4. Conclusion

We investigated a new method to solve ill-posed image deblurring problems by applying trust-region technique. The
method applies subspace technique to the trust-region subproblem, which possesses not only the efficiency but also the glo-
bal convergence.

The numerical experiments on the restoration of the degraded image showed that the restoration methods proposed in
this paper can restore the original input with relatively small root mean-square errors. Therefore, we concluded that our pro-
posed algorithm is applicable for astronomical image deblurring problems.
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Appendix A. Global convergence result

To analyze the convergence properties of Algorithm 2.2, we need to prove the following lemma. The lemma follows from
a well known theorem in the trust-region method (see Theorem 4 of [36] and Lemma 4.8 of [37]).

Table 1
Comparison of subspace method with PBB method for different noise levels.

Noise levels: level Iterative steps rmse CPU (s)

0.005 2 0.0034 7.0469
Subspace method 0.01 2 0.0062 7.5938

0.005 16 0.0053 7.1400
PBB method 0.01 21 0.0058 8.5940

Table 2
Typical values of the parameters.

Parameters for Algorithm 2.1 � 1:0� 10�3

bc 0.5
c 0.9

Parameters for Algorithm 2.2 c0 0.8
c1 1.5
c2 2.0
g 0.95
l1 0.95
l2 0.9995
f0 ½1; . . . ;1�T

D0 kf0: � g0k
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Lemma A.1. If sk satisfies (14) then

Uð0Þ �UðskÞP bch 1� 1
2

h

� �
kĝkkmin Dk;

kĝkk
khkk1

;
kĝkk
kbBkk

( )
; ð31Þ

where h is the parameter in (13), bc is the parameter in (14), ĝk ¼ Dkgk;
bBk ¼ DkK

TKDk, and hk 2 RN2
is defined by

ðhkÞi ¼
jðD2

kgkÞij
ðfkÞi

; i ¼ 1; . . . ;N2: ð32Þ

Proof. From

Uð�sD2
kgkÞ ¼ �sgT

k D2
kgk þ

1
2
s2gT

k D2
kK

TKD2
k gk;

we get that

sH

k ¼
gT

k D2
k gk

gT
k D2

kK
TKD2

kgk

is the minimizer of U along �D2
kgk. Because sc

k is the minimizer of U along the direction �D2
kgk in the trust region and feasible

set, we consider the constraints ksDkgkk 6 Dk and fk � sD2
kgk P 0, which imply

0 < s 6 Tk;

where Tk is defined by

Tk ¼min
Dk

kDkgkk
;min

ðfkÞi
ðD2

kgkÞi
: ðgkÞi > 0

( )( )
: ð33Þ

It can be seen that

Tk P min
Dk

kĝkk
;

1
khkk1

� �
:

If sH

k < Tk, then

Uð�sc
kÞ ¼ Uðhksc

kÞ ¼ Uð�hksH

k D2
kgkÞ ¼ �hk 1� 1

2
hk

� �
ðgT

k D2
kgkÞ

2

gT
k D2

kK
TKD2

kgk

:

If sH

k P Tk, i.e.,

gT
k D2

kK
TKD2

kgk 6
gT

k D2
k gk

Tk
;

then

Uð�sc
kÞ ¼ Uðhksc

kÞ ¼ Uð�hkTkD2
k gkÞ ¼ �hkTkgT

k D2
k gk þ

1
2

h2
k T2

kgT
k D2

kK
TKD2

k gk 6 hkTk �gT
k D2

k gk þ
1
2

hkTk �
gT

k D2
k gk

Tk

 !

¼ �hk 1� 1
2

hk

� �
TkgT

k D2
k gk:

Thus we get that

Uð�sc
kÞ 6 �hk 1� 1

2
hk

� �
gT

k D2
kgk min Tk;

gT
k D2

k gk

gT
k D2

kK
TKD2

kgk

( )
:

Because h 6 hk 6 1, we can get

hk 1� 1
2

hk

� �
P h 1� 1

2
h

� �
:

Now from (14) we can obtain

Uð0Þ �UðskÞP bcðUð0Þ �Uð�sc
kÞÞP bchk 1� 1

2
hk

� �
gT

k D2
kgk min Tk;

gT
k D2

kgk

gT
k D2

kK
TKD2

k gk

( )

P bch 1� 1
2

h

� �
kĝkkmin Dk;

kĝkk
khkk1

;
kĝkk
kbBkk

( )
:

Hence we complete the proof. h

2374 Y. Wang, S. Ma / Applied Mathematics and Computation 215 (2009) 2359–2377



Author's personal copy

A.1. Proof of Theorem 2.1

Proof. We prove this theorem by contradiction. Assume that there is a � > 0 such that kĝkkP � for all sufficiently large k.
If the trial step sk is accepted in Algorithm 2, we call the kth iteration a successful iteration, otherwise an unsuccessful

iteration. So if there are only a finite number of successful iterations, Dkþ1 ¼ c0Dk for all sufficiently large k andX1
k¼1

Dk < þ1 ð34Þ

holds because c0 2 ð0;1Þ.
If there is an infinite sequence fkig of successful iterations, since fWðfkÞg is non-increasing and bounded below,

0 6
X1
k¼0

ðWðfkÞ �Wðfkþ1ÞÞ < þ1:

From Lemma A.1 we can get for successful iteration k

WðfkÞ �Wðfkþ1Þ ¼ Uð0Þ �UðskÞP bch 1� 1
2

h

� �
kĝkkmin Dk;

kĝkk
vh

;
kĝkk
vbB

( )
: ð35Þ

Hence we can obtainX1
i¼1

Dki
< þ1:

Because Dkþ1 ¼ c0Dk for an unsuccessful iteration and Dkþ1 6 c2Dk for a successful iteration, we can get

X1
k¼1

Dk ¼
X1
i¼1

Dki
þ
X1
i¼1

Xkiþ1�ki�1

j¼1

Dkiþj 6 m
1

i¼1
Dki
þ
X1
i¼1

ðc2 þ c0c2 þ c2
0c2 þ � � � þ ckiþ1�ki�2

0 c2ÞDki
6

X1
i¼1

1þ c2

1� c0

� �
Dki

< þ1:

Therefore,

Dk ! 0; as k!1: ð36Þ

But from (16), (13) and

WðfkÞ �Wðfk þ skÞ ¼ Uð0Þ �UðskÞ;

we can get qf
k < 1 6 l2 for sufficiently large k. Hence we can conclude from Algorithm 2 that fDkg cannot converge to 0. It

contradicts (36) and establishes the result. h

It should be noted that (AS.1) and (AS.2) imply that there exist positive scalars vD;vbB ;vĝ ;vh such that

kDkk 6 vD; kbBkk 6 vbB ; kĝkk 6 vĝ ; khkk1 6 vh:

A.2. Proof of Theorem 2.2

Proof. The proof is by contradiction. Let �1 2 ð0;1Þ be given and assume that there is a sequence fmig such that kĝmikP �1.
Theorem 2.1 guarantees that for any �2 2 ð0; �1Þ there is a subsequence of fmig (without loss of generality we assume that it
is the full sequence) and a sequence flig such that

kĝkkP �2; mi 6 k < li; kĝlik < �2: ð37Þ

If the kth iteration is successful, then according to (35),

WðfkÞ �Wðfkþ1Þ > bch 1� 1
2

h

� �
�2 min Dk;

�2

vh
;
�2

vbB
( )

; mi 6 k < li:

Since WðfÞ is bounded below on L and the sequence fWðfkÞg is non-increasing, fWðfkÞg converges and fWðfkÞ �Wðfkþ1Þg con-
verges to zero. From kfkþ1 � fkk 6 vDDk, it follows that, for sufficiently large i,

WðfkÞ �Wðfkþ1ÞP �3kfkþ1 � fkk; mi 6 k < li; ð38Þ

where �3 ¼ bch 1� 1
2 h

	 

�2=vD. Using (38) and the triangle inequality,

Wðfmi
Þ �Wðfki

ÞP �3kfki
� fmi

k; mi 6 ki 6 li:
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The uniform continuity of gðfÞ (since L is compact) and the convergence of fWðfkÞg can now be used to deduce that

kgmi
� gli
k 6 �2 ð39Þ

for i sufficiently large.
Consider a subsequence of li (without loss of generality assume that it is the full sequence) such that ff lig converges to fH.

Then ffmig converges to fH. We define vðfÞ as the diagonal vector of DðfÞ. If the jth component of gH is non-zero, then from
the KKT condition (8), the jth component of f li and fmi will approach to the bound. Assume that the upper bound is
approached, then

ðf li Þj ! 0 and ðfmi
Þj ! 0; as i!1:

Thus fdiagðvmi
� v li Þgli

g converges to zero. Therefore, for i sufficiently large,

kðDmi
� Dli Þgli

k ¼ kdiagðvmi
� v li Þgli

k 6 �2: ð40Þ

Using the triangle inequality for any m and l,

kĝmk 6 kDmkkgm � glk þ kðDm � DlÞglk þ kĝlk: ð41Þ

Now combining (41) with (37), (39), and (40), we obtain that

�1 6 ðvD þ 2Þ�2:

Since �2 can be any number in ð0; �1Þ, this is a contradiction. h
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