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ABSTRACT

The discontinuous-grid method can greatly reduce the stor-
age requirement and computational cost in finite-difference
modeling, especially for models with large velocity contrasts.
However, this technique is mostly applied to time-domain
methods. We have developed a discontinuous-grid finite-
difference scheme for frequency-domain 2D scalar wave
modeling. Special frequency-domain finite-difference stencils
are designed in the fine-coarse grid transition zone. The
coarse-to-fine-grid spacing ratio is restricted to 2n, where n
is a positive integer. Optimization equations are formulated
to obtain expansion coefficients for irregular stencils in the
transition zone. The proposed method works well when
teamed with commonly used 9- and 25-point schemes. Com-
pared with the conventional frequency-domain finite-differ-
ence method, the proposed discontinuous-grid method can
largely reduce the size of the impedance matrix and number
of nonzero elements. Numerical experiments demonstrated
that the proposed discontinuous-grid scheme can significantly
reduce memory and computational costs, while still yielding
almost identical results compared with those from conven-
tional uniform-grid simulations. When tested for a very long
elapsed time, the frequency-domain discontinuous-grid
method does not show instability problems as its time-domain
counterpart usually does.

INTRODUCTION

Compared with time-domain finite-difference (TDFD) modeling,
the frequency-domain finite-difference (FDFD) method presents

numerous advantages, including fewer accumulative errors that can
cause stability problems, flexibility in calculating a single frequency
or a few frequencies, generating responses from multiple shots us-
ing a direct solver, or implementation of anelasticity by directly
introducing complex constitutive relations (Jo et al., 1996; Chen,
2012; Gosselin-Cliche and Giroux, 2014; Li et al., 2016). An effi-
cient solver for the wave equation is the basis for frequency-domain
seismic reverse time migration or full-waveform inversion (Loe-
wenthal and Mufti, 1983; Pratt, 1999; Plessix and Mulder, 2004;
Brossier et al., 2009; Virieux and Operto, 2009; Kim et al., 2011).
Many researchers have successfully developed FDFD operators and
optimal methods, e.g., the rotated FD method, weighed-average
method, and average-derivative method (e.g., Jo et al., 1996; Shin
and Sohn, 1998; Štekl and Pratt, 1998; Min et al., 2000; Hustedt
et al., 2004; Operto et al., 2007, 2009, 2014; Cao and Chen,
2012; Chen, 2012, 2014; Gu et al., 2013; Gosselin-Cliche and
Giroux, 2014; Zhang et al., 2014, 2015; Tang et al., 2015; Chen
and Cao, 2016; Yang and Mao, 2016; Fan et al., 2017). One of
the major drawbacks in these techniques is the computational cost
due to implicitly solving the linear equations, and this limits its
practical applications. Therefore, it is always desirable to improve
the efficiency in frequency-domain forward modeling.
For numerical modeling methods based on grid discretization, the

spatial and temporal sampling intervals are major factors affecting
the modeling accuracy and efficiency. Undersampling results in in-
accurate solutions and unacceptable numerical dispersion, whereas
oversampling can cause storage and computational overburdens
(Tessmer, 2000; Hu and Jia, 2016). This dilemma occurs especially
for media with large velocity variations. Therefore, it is desirable to
adapt samplings to model velocity and signal frequency. For TDFD
modeling, the nonuniform grid with variable spacing, discontinuous
grid (e.g., Jastram and Behle, 1992; Wang and Schuster, 1996;
Wang et al., 2001; Kristek et al., 2010; Zhang et al., 2013; Fan et al.,
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2015; Li et al., 2015), or variable time steps (e.g., Falk et al., 1998;
Tessmer, 2000; Kang and Baag, 2004; Huang and Dong, 2009a,
2009b; Li et al., 2015) have been developed to increase the com-
putation efficiency. FDFD modeling discretizes the wave equation
in the frequency and spatial domains simultaneously. Therefore,
there exist two types of nonuniform grids, the frequency-adaptive
grid and the space-adaptive grid. The former adopts a coarse grid at
high frequencies and a fine grid at low frequencies, and the spatial
interval usually decreases as the frequency increase (Fichtner et al.,
2013; Hu and Jia, 2016). The latter, also known as the velocity-
adaptive grid, is widely used in TDFD modeling (e.g., Jastram
and Behle, 1992; Jastram and Tessmer, 1994; Wang and Schuster,
1996; Aoi and Fujiwara, 1999; Hayashi et al., 2001; Wang and Tak-
enaka, 2001; Wang et al., 2001; Kang and Baag, 2004; Kristek et al.,
2010; Zhang et al., 2013; Fan et al., 2015; Li et al., 2015), but it is
seldom used in FDFD modeling. The space-adaptive grid scheme is
proposed to save computational cost for models with large velocity
contrasts. It uses fine and coarse grids to discretize low- and high-
velocity areas, respectively. The major issue for the space-adaptive
nonuniform grid is dealing with the wavefield in the transition zone
between two grids, where, without proper FD schemes, artificial
reflections may be generated (Fan et al., 2015).
A recently developed technique is the mesh-free FD (e.g., Martin

et al., 2015; Takekawa et al., 2015; Takekawa and Mikada, 2016; Li
et al., 2017), which is highly adaptive to complex velocity variations
and model geometry but also has certain disadvantages. To approxi-
mate the spatial derivatives, the mesh-free FD usually requires more
neighboring nodes compared with conventional FD, and weighting
coefficients vary from node to node. Much information (e.g., the
locations of individual nodes and their neighbors and the weighting
coefficients for all of the surrounding nodes) has to be saved (Li
et al., 2017). Moreover, to generate the node layout is not easy work
(Fornberg and Flyer, 2015). Therefore, the merits of this method
have yet to be investigated.
As another option, we propose a frequency-domain discontinu-

ous-grid FD, in which rectangular lattices are used in the major

computation areas. Only in very limited areas, where the lattices
need to transfer from one density to another, are special stencils
required. This method can achieve a moderate capability to adapt
to velocity variations, while keeping a lot of convenience similar to
conventional FDFD. In the following sections, we will first present
our methodology. Then, we give numerical examples to demon-
strate the theoretical analysis, and finally make the conclusion.

THEORY

The frequency-domain finite-difference operator

The 2D scalar wave equation in the frequency domain is given by

∂2P
∂x2

þ ∂2P
∂z2

þ ω2

v2
P ¼ 0; (1)

where P is the pressure, ω is the angular frequency, and v is the
velocity. Given an FDFD operator with ð2Nx þ 1Þ × ð2Nz þ 1Þ
points around the central point (Figure 1), the approximation of
the spatial derivatives is (Fan et al., 2017)

∂2P
∂x2

≈
1

Δx2
XNx

i¼0

XNz

j¼0

ci;jðPm−i;n−jþPmþi;nþjþPm−i;nþjþPmþi;n−jÞ;

(2a)

∂2P
∂z2

≈
1

Δz2
XNx

i¼0

XNz

j¼0

di;jðPm−i;n−jþPmþi;nþjþPm−i;nþjþPmþi;n−jÞ;

(2b)

where Pm;n ¼ PðmΔx; nΔzÞ, Δx and Δz are the spatial sampling
intervals in the x- and z-directions; ci;j and di;j are the weighting
coefficients satisfying

PNx
i¼0

PNz
j¼0ci;j¼0 and

PNx
i¼0

PNz
j¼0 di;j ¼ 0;

and subscripts i, j identify the locations shown in Figure 1. The
mass acceleration term in equation 1 can be written as

ω2

v2
P¼ω2

v2
XNx

i¼0

XNz

j¼0

bi;jðPm−i;n−jþPmþi;nþjþPm−i;nþj

þPmþi;n−jÞ; (3)

where bi;j satisfy
PNx

i¼0

PNz
j¼0 bi;j ¼ 1

4
with (bi;j ≥ 0). Substituting

equations 2 and 3 into equation 1, we obtain the general FDFD
scheme for 2D scalar wave equation:

1

Δx2
XNx

i¼0

XNz

j¼0

ci;jðPm−i;n−jþPmþi;nþjþPm−i;nþjþPmþi;n−jÞ

þ 1

Δz2
XNx

i¼0

XNz

j¼0

di;jðPm−i;n−jþPmþi;nþjþPm−i;nþjþPmþi;n−jÞ

þω2

v2
XNx

i¼0

XNz

j¼0

bi;jðPm−i;n−jþPmþi;nþjþPm−i;nþjþPmþi;n−jÞ¼0:

(4)

WhenΔx ≠ Δz, the quantityG (the number of grid points per wave-
length) is defined with respect to the larger spatial sampling interval
maxðΔx;ΔzÞ. Therefore, we separate the analysis for Δx ≥ ΔzFigure 1. Schematic stencil of the 2D FDFD operator.
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and Δx < Δz. We only need to consider the case Δx ≥ Δz, and the
case Δx < Δz can be treated using the similar method (refer to Fan
et al., 2017). By substituting the aspect ratio r ¼ Δx∕Δz into equation 4
and letting ai;j ¼ ci;j þ r2di;jði ¼ 0;1; · · · Nx; j ¼ 0;1; · · · NzÞ, we
obtain

1

Δx2
XNx

i¼0

XNz

j¼0

ai;jðPm−i;n−jþPmþi;nþjþPm−i;nþjþPmþi;n−jÞ

þω2

v2
XNx

i¼0

XNz

j¼0

bi;jðPm−i;n−jþPmþi;nþjþPm−i;nþjþPmþi;n−jÞ

¼0; (5)

where ai;j satisfy
PNx

i¼0

PNz
j¼0 ai;j ¼ 0.

To perform the dispersion analysis, we substitute a plane wave
Pðx; z;ωÞ ¼ P0e−iðkxxþkzzÞ into equation 5. The normalized phase
velocity is obtained as

Vph

v
¼ G

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
PNx

i¼0

PNz
j¼0 ai;jTi;jPNx

i¼0

PNz
j¼0 bi;jTi;j

vuut ; (6)

where Vph is the phase velocity and Ti;j ¼ cosðið2π sin θ∕GÞÞ
cosðjð2π cos θ∕rGÞÞ. The number of grid points per wavelength
G is defined with respect to the larger spatial sampling interval
maxðΔx;ΔzÞ. For the case Δx ≥ Δz, G ¼ 2π∕kΔx. The term θ
is the propagation angle from the z-axis and satisfies
kx ¼ k · sin θ, kz ¼ k · cos θ. The coefficients ai;j and bi;j are
determined by minimizing the phase error

Figure 2. Discontinuous-grid configuration for the 9-point scheme,
where points A and B are located in the fine- and coarse-grid regions
and points C and D involve special stencils in the transition zone.

Figure 3. Dispersion curves for different FDFD stencils are shown
in Figure 2. (a) 9-point scheme located at A, (b) 9-point schemes
located at B and C, and (c) 7-point scheme located at C.

Table 1. Coefficients of different FDFD operators for the discontinuous-grid 9-point scheme.

Scheme Subscripts b c d

9-point 1, 0 4.42152228426023E-02 3.97801381256927E-01 −1.00989396183610E-01
0, 1 4.42152227141390E-02 −1.00989537605994E-01 3.97801522922021E-01

1, 1 1.82555415547753E-03 1.01316785228176E-01 1.01316622117084E-01

7-point 1, 0 2.84805973233173E-03 4.93757076638540E-01 −1.18716232776188E-01
1, 2 4.59912033498720E-02 −1.47788701711940E-03 1.26355311671418E-01

Discontinuous-grid FDFD modeling T237
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Eðai;j; bi;jÞ ¼
ZZ �

1 −
Vph

v

�
2

d ~kdθ; (7)

where ~k ¼ 1∕G. Given an FDFD stencil, the range of propagation
angle θ is ½0; π∕2�, and the range of ~k can be determined by con-
sidering the trade-off between the wavenumber coverage and the
allowed phase-velocity error (Chen, 2014; Fan et al., 2017). To im-
plement the absorbing boundary, independent coefficients ci;j and
di;j are required. According to Fan et al. (2017), we create the fol-
lowing two functions:

E1 ¼
PNx

i¼0

PNz
j¼0 ci;jTi;jPNx

i¼0

PNz
j¼0 bi;jTi;j

þ
�
2π sin θ

G

�
2

(8a)

and

E2 ¼
PNx

i¼0

PNz
j¼0 di;jTi;jPNi

i¼0

PNj

j¼0 bi;jTi;j

þ
�
2π cos θ

rG

�
2

: (8b)

Parameters ci;j and di;j (already satisfy ai;j ¼ ci;j þ r2di;j) can be
determined by minimizing the error function:

Table 2. Coefficients of different FDFD operators for the discontinuous-grid 25-point scheme.

Scheme Subscripts b c d

25-point 1, 0 5.78217827298346E-02 5.60727265402464E-02 −8.66542781092547E-02
0, 1 5.78217684314893E-02 −8.66546890805362E-02 5.60732273483046E-02

1, 1 5.21229867820672E-02 4.02036844291894E-02 4.02029913734037E-02

2, 0 3.49939267487124E-03 5.02478602281297E-02 −4.03002251016512E-03
0, 2 3.49939019117563E-03 −4.02980887453836E-03 5.02476311551104E-02

2, 1 4.09067953478049E-03 4.62843358770098E-02 −1.21719466335537E-04
1, 2 4.09067716185693E-03 −1.22010028175578E-04 4.62846184593161E-02

2, 2 5.22403718311664E-05 4.27351493102198E-03 4.27347226989979E-03

15-point (C) 1, 0 8.92761632779835E-02 8.66592897676037E-02 −2.15164250441208E-01
2, 0 6.81831558897478E-03 7.86534894068312E-02 −1.95908261285839E-02
0, 1 2.45615839405423E-02 −4.11149743015129E-02 2.63917386391569E-01

1, 1 2.37729589191511E-02 2.15365282968781E-02 2.14677683469774E-01

2, 1 3.20519169186576E-05 1.92574329161197E-02 1.98849759538215E-02

11-point 1, 0 2.10600100347608E-01 −5.22392789034492E-01 −8.97137170303385E-03
2, 0 9.62317792145256E-03 2.33146018008485E-01 −3.98401060937905E-02
0, 2 3.55625145498464E-02 -2.24534583967475E-02 8.23027373052518E-02

2, 2 1.28483890247018E-02 2.22178529671989E-02 4.24549690179896E-02

15-point (E) 1, 0 6.32384653959232E-02 3.33545210163886E-01 −2.66843786731160E-01
2, 0 4.15911499069887E-02 −1.16346746479054E-01 6.75668724527263E-02

3, 0 6.66369535971710E-03 5.86885255533620E-02 −2.02296930435190E-02
1, 2 4.77085692761939E-02 −1.34338019141954E-02 1.18178680156804E-01

3, 2 6.35223285305913E-04 1.34548272209029E-02 6.33753099351924E-03

Figure 4. Discontinuous-grid configuration for the 25-point
scheme.
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E ¼
ZZ

ðE2
1 þ E2

2Þd ~kdθ; (9)

where the ranges of θ and ~k are the same as those in equation 7.
Equation 4 is the general formula for a ð2Nx þ 1Þ × ð2Nz þ 1Þ-

point scheme. Actually, 3½ðNx þ 1Þ × ðNz þ 1Þ − 1� independent
coefficients can be determined by optimizing equations 7 and 9.
For some special FDFD stencils such as the 17-point scheme (Tang
et al., 2015), when the coefficients at certain points are zero, only
the nonzero coefficients need be optimized. The optimization proc-
ess used here is essentially the same as that used in Fan et al. (2017).
However, due to different combinations of coefficients used, some
optimal coefficients here are different from those in Fan et al. (2017)
by an integer factor of two or four.

The methodology of discontinuous-grid FDFD scheme

The subsurface media usually have lower velocity in a shallow
region and higher velocity in a deep region. To adapt to velocity
variations like this, it is expected that we can use fine and coarse
grids in different regions, as shown in Figure 2. Assuming that
the horizontal and vertical grid intervals are Δx and Δz in the
fine-gridded region and 2Δx and 2Δz in the coarse-gridded region,
the coarse-to-fine grid spacing ratio N equals to two. We first con-
sider the 9-point discontinuous-grid FDFD scheme. Illustrated in
Figure 2 are some typical stencils involved in coarse, fine, and tran-
sition regions. The standard 9-point schemes are used in the fine and
coarse grid regions (as indicated by A and B in Figure 2). The key
issue is that a particular FDFD operator should be used in regions
where the fine grid is connecting to the coarse grid. Two types of
grid points are involved in that row. The first is the grid point cen-
tered at C, where the vertical grid line is continuous and the standard
9-point scheme can be used. The second is the grid point centered at
D, where the vertical grid line is discontinuous and a new 7-point
scheme is formed.
The optimal coefficients for 9- and 7-point schemes can be cal-

culated using the same optimal method mentioned above. To opti-
mize objective functions in equations 7 and 9, we set the range of ~k
within [0, 0.25] for 9-point scheme and [0, 0.10] for 7-point scheme.
The resulting coefficients are listed in Table 1, and the normalized
phase velocities are illustrated in Figure 3. Shown in Figure 3a are
dispersion curves for the standard 9-point stencil at grid point A.
The dispersion curves for the 9-point stencils at grid points B
and C (Figure 3b) are obtained by shrinking the dispersion curves
of the 9-point (A) by half along the horizontal axis because the spa-
tial interval is 2Δx and 2Δz. Shown in Figure 3c are dispersion
curves for the 7-point stencil at grid point C. The 1% phase-velocity
error is a widely used criterion to determine the minimum G for
different FDFD operators. The maximum 1∕Gs for the stencils
in Figure 3a–3c are 0.29, 0.145, and 0.135, respectively. Because
stencils B-D are used in the lower layer, where the speed is at least
twice of that in the upper layer, the wavelength there is at least twice
longer than in the upper layer. Then, the maximum 1∕Gs for the
latter two stencils are actually 0.29 and 0.27. Therefore, to keep
the phase-velocity error less than 1%, G should be at least 3.70
for the 9-point discontinuous-grid scheme.
In addition to the 9-point scheme, we also develop a discontinu-

ous grid for a 25-point FDFD scheme, which is widely used for its
lower spatial dispersion. Illustrated in Figure 4 are typical stencils
involved in different regions. The standard 25-point scheme can be

used inside the fine- and coarse-grid regions (as indicated by A and
B). On the other hand, special operators are used in the transition
region. Because the 25-point scheme involves more rows of grid
points, its transition zone involves more rows. Along the row above
the connecting row, a 15-point scheme (indicated by C) is used. At
the connecting row, two kinds of stencils are used, an 11-point
scheme at grid point D and another 15-point scheme at grid
point E.
The optimal coefficients for these schemes can be calculated

by the same method used before. To optimize objective functions
in equations 7 and 9, we set the range of ~k within [0, 0.45] for the
25-point scheme, [0, 0.30] for the 15-point scheme (C), [0, 0.15] for

Figure 5. Dispersion curves for different FDFD stencils are shown
in Figure 4. (a-e) 25-point scheme (location A), 25-point scheme
(location B), 15-point scheme (location C), 11-point scheme (loca-
tion D), and another 15-point scheme (location E), respectively.
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the 11-point scheme, and [0, 0.15] for another 15-point scheme (E).
The resulting optimized coefficients are listed in Table 2, and the
related normalized phase velocities are illustrated in Figure 5. Sim-
ilar to the analysis of Figure 3, the maximum 1∕Gs for difference
stencils in Figure 5a–5e are 0.47, 0.235, 0.31, 0.16, and 0.16, re-
spectively. Stencils B-E are used in the lower layer, where the speed
is at least twice that in the upper layer. The maximum 1∕Gs for the
four stencils are actually 0.47, 0.61, 0.32, and 0.32, respectively.
Therefore, to keep the phase-velocity error less than 1%, the G
should be at least 3.125 for the 25-point discontinuous-grid scheme.
The computational efficiency of FDFD modeling is primarily de-

pendent on the size and sparsity of the impedance matrix (Štekl and
Pratt, 1998). As an example, we use a simple model to compare the
impedance matrices of the uniform and discontinuous grids. The
model is partitioned in two ways, a uniform grid with 11 × 15 grid
points (Figure 6a) and a discontinuous grid consisting of 11 × 5 grid
points in its top part and 6 × 5 grid points in its bottom part (Fig-
ure 6b). The 9- and 25-point schemes are tested for the uniform and
discontinuous grids, and structures of their impedance matrices are
compared in Figure 6c–6f. Compared with the uniform grid, the

discontinuous gird reduces the size of the impedance matrix to
26.5% for the 9- and 25-point schemes, reduces the nonzero ele-
ments to 48.6% for the 9-point scheme, and to 41.1% for the
25-point scheme. For both schemes, the size and sparsity of the
impedance matrix are greatly reduced.
To check whether changing the structure of the impedance matrix

can cause the linear system to be ill-conditioned, we calculate con-
dition numbers for the above example. They are 3.283 and 3.026
for the uniform- and discontinuous-grid 9-point schemes and 81.07
and 49.16 for the uniform- and discontinuous-grid 25-point schemes.
The condition number of the discontinuous-grid method is smaller
than that of the corresponding uniform-grid method, for the 9-
and 25-point schemes. Therefore, the linear problem is still well-con-
ditioned.
The above discontinuous-grid FDFD method is derived based on

N ¼ 2. Following the approach by Fan et al. (2015) for the TDFD,
this procedure can be repeated n times to achieve an overall factor of
N ¼ 2n by successively using multiple transition zones. However,
this scheme cannot be extended to numbers other than a power of 2,
for example, N ¼ 3.

Figure 6. Impedance matrices for the 9- and 25-point schemes. (a and b) Different partitions using uniform and discontinuous grids in the same
model. (c and e) Impedance matrices for 9- and 25-point schemes using the uniform grid. (d and f) Impedance matrices for 9- and 25-point
schemes using the discontinuous grid.
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NUMERICAL EXAMPLES

To validate the accuracy and efficiency of the proposed discontinu-
ous-grid FDFD method, we compare numerical results calculated us-
ing our method with those from the conventional uniform-grid
method using 9- and 25-point schemes. The sparse linear systems
involved in all numerical examples are solved using LU decompo-
sition of the impedance matrix. The subsequent Gaussian elimination
is calculated using the open-source software MUMPS (multifrontal
massively parallel solver, Amestoy et al., 2001, 2006). The first
model tested is a 2D homogeneous model with a size of
3000 × 3000 m and a constant velocity of 4000 m∕s. The source
is a 30 Hz Ricker wavelet located at the center of the model
(1500, 1500 m). The model is discretized by either a uniform grid
or a discontinuous grid, respectively. The former uses a small grid
spacing of Δx ¼ Δz ¼ 7.5 m in the entire model and results in a
grid size of 401 × 401. The latter uses a small grid spacing of Δx ¼
Δz ¼ 7.5 m in the shallow part and a large grid spacing of 2Δx and
2Δz in the deeper part. The boundary between the two differently
gridded regions stays at z ¼ 1650 m (indicated by a dashed line

in Figures 7b and 8b), and the sizes of the finely and coarsely gridded
regions are 401 × 221 and 201 × 90. Then, the two differently
gridded models are used to work with the 9- and 25-point schemes,
and the corresponding results are shown in Figures 7 and 8. Figure 7a
and 7b shows wavefield snapshots at t ¼ 0.36 s for the uniform-grid
and discontinuous-grid 9-point schemes. Figure 7c and 7d compares
synthetic seismograms from two receivers located at (1500, 1350 m)
and (1500, 1950 m). Figure 8 is similar to Figure 7 except that the
25-point scheme is used. By comparing snapshots and seismograms,
we find that, for the 9- and 25-point schemes, the discontinuous-grid
scheme has nearly the same accuracy as the conventional uniform-
grid scheme. As for the memory requirement and computational
efficiency, they mainly depend on the structure of the impedance ma-
trix. For this specific example (including the perfectly matched
layers), the discontinuous-grid method reduces the size of the matrix
to 42.6%, the number of nonzero elements to 65.2% and 65.1% for
the 9- and 25-point schemes, respectively. The CPU times are 632
and 389 s for the uniform-grid and discontinuous-grid 9-point
schemes, and 1468 and 824 s for the uniform-grid and discontinu-
ous-grid 25-point schemes, respectively. Apparently, the discontinu-
ous-grid method can greatly reduce the computational cost for the 9-
and 25-point schemes.
The second is a three-layer model with a size of 1000 × 1000 m.

The velocities in the three layers are 1000, 2000, and 4000 m/s, with
the two interfaces located at z ¼ 250 and 650 m. The source is a

Figure 7. Simulation results using the homogeneous velocity model
and the uniform-grid and discontinuous-grid 9-point schemes. (a and
b)Wavefield snapshots at t ¼ 0.36 s for the uniform-grid and discon-
tinuous-grid 9-point schemes, respectively. The dashed line in (b) de-
notes the boundary between the fine and coarse grids. (c and d)
Synthetic seismograms calculated at (1500, 1350 m) and (1500,
1950 m) using a uniform grid (solid blue line) and a discontinuous
grid (dashed red line), respectively.

Figure 8. Similar to Figure 7, except the results are calculated using
uniform-grid and discontinuous-grid 25-point schemes.
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30 Hz Ricker wavelet located at (500, 400 m). The layered model is
discretized by the uniform-grid and the discontinuous-grid, respec-
tively. The former uses a small grid spacing of Δx ¼ Δz ¼ 2.5 m in
the entire model. The latter uses Δx ¼ Δz ¼ 2.5 m between z ¼ 0

and 242.5 m, 2Δx and 2Δz between z ¼ 242.5 and 630 m, and 4Δx
and 4Δz at deeper than z ¼ 630 m. The borders between the three
differently gridded regions are indicated by dashed lines in Fig-
ures 9b and 10b. Three receivers are placed in the three differently
gridded regions at (500, 125 m), (700, 400 m), and (500, 800 m),

respectively (Figure 9a and 10a). The two differently gridded
models are then used to work with the 9- and 25-point schemes.
The corresponding results are shown in Figures 9 and 10. Figure 9a
and 9b shows the wavefield snapshots at t ¼ 0.25 s for the uniform-
grid and discontinuous-grid 9-point schemes. Figure 9c–9e com-
pares seismograms at three receivers. Figure 10 is similar to Figure 9
except that the 25-point scheme is used. From Figures 9 and 10, the
results demonstrate that, for the three-layer model, the discontinu-
ous-grid and uniform-grid schemes generate comparable accuracy,
regardless of using the 9- or 25-point scheme. Regarding memory
requirements and computational efficiency, the discontinuous-grid
reduces the size of the matrix to 17.5% and the number of nonzero
elements to 41.8% and 41.6% for the 9- and 25-point schemes, re-
spectively. The CPU times are 623 and 243 s for the uniform- and

Figure 9. Simulation results using the three-layer model and uni-
form-grid and discontinuous-grid 9-point schemes. (a and b) Wave-
field snapshots at t ¼ 0.25 s. The two dashed lines in (b) denote the
boundaries between the different grids. Shown in (c-e) are seismo-
grams calculated at locations (500, 125 m), (700, 400 m), and (500,
800 m), using the uniform-grid (solid blue line) and discontinuous-
grid (dashed red line) methods. The locations of the source and
three receivers are indicated by the red star and triangles in (a).

Figure 10. Similar to those in Figure 9, except the uniform-grid and
discontinuous-grid 25-point schemes are used.
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discontinuous-grid 9-point schemes and 1462 and 486 s for the uni-
form- and discontinuous-grid 25-point schemes, respectively. Sim-
ilar to the test in the homogeneous model, the discontinuous-grid
method requires much less computational cost for both 9- and 25-
point schemes. From the above two numerical examples, we see that
the discontinuous-grid method can greatly reduce the computational
cost while keeping the accuracy comparable to the uniform-grid
scheme. Although increasing the efficiency is mainly dependent
on the reduction of the impedance matrix, number of nonzero el-
ements, and characteristics of velocity models, the specific solvers
used may also affect its actual performance.
Instability problems used to happen in time-domain discontinu-

ous-grid modeling (Kristek et al., 2010; Zhang et al., 2013; Fan
et al., 2015). We implement another numerical experiment to test
this issue in frequency-domain discontinuous-grid modeling. The
discontinuous-grid 9-point scheme is used to calculate synthetic
seismograms in a homogeneous medium. The model size, discre-
tization, velocity, and source location are the same as those used in
the first numerical example. To test the stability of the frequency-
domain method, an extremely large number of time steps 215 and a
time-sampling interval of 0.005 s are used. This is equivalent to a
frequency interval of approximately 6.1 × 10−3 Hz. For coarse-to-
fine-grid spacing ratios N ¼ 2 and 4, seismograms received at
(1500, 1475 m) are illustrated in Figure 11a and 11b. To demon-
strate the waveform accuracy and stability after a very long elapsed
time, the inset plots give magnified waveforms for the first one
second, whereas the waveforms below them give the full length
of calculations up to 164 s. We see seismograms stay stable
within the entire time span. Although not shown here, similar results
can be obtained using the discontinuous-grid 25-point scheme.
Frequency-domain methods are naturally resistant against time
instability problem. This is mainly because, unlike the time-domain
method, the frequency-domain method does not have time
dispersion.

CONCLUSION

The discontinuous-grid method usually works in time-domain
FD modeling. In this study, we proposed a discontinuous-grid fi-
nite-difference scheme for frequency-domain 2D scalar wave equa-
tion. Special FD stencils are designed to fit the shape of the FDFD
operator in the transition zone between different gridded regions.
Optimization procedures were derived to find the expansion coef-
ficients for the discontinuous-grid 9- and 25-point schemes. The
ratio of grid intervals changing from coarse-to-fine can be any num-
ber equals to a power of two. Numerical experiments demonstrated
that the proposed discontinuous-grid scheme for FDFD modeling
yields wavefields that are comparable with those using conventional
uniform-grid simulations, while greatly reducing memory and com-
putational costs for models with large velocity contrast. The stabil-
ity problem often seen in the TDFD discontinuous-grid method
does not happen for FDFD. The potential applications of the dis-
continuous grid in finite-difference calculations and its actual sav-
ings in computational cost are closely related to the characteristics
of velocity models. This method is suitable for models with a large-
scale velocity variation trend, e.g., regions with a strong vertical
velocity gradient. It may also be useful in some special models
in which a large amount of small-scale low-velocity inclusions
are embedded in a layer. Examples of such models include an
intermediate layer with gas clouds or a shallow low-velocity
layer composed of strong heterogeneities generating near-surface
scatterings.
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