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Laplace-domainmodeling plays an important role in Laplace-domain fullwaveform inversion. In order to provide
efficient numerical schemes for Laplace-domain modeling, two 9-point schemes for Laplace-domain 2D scalar
equation are compared in this paper. Compared to thefinite-element 9-point scheme, the average-derivative op-
timal 9-point scheme reduces the number of grid points per pseudo-wavelength from 16 to 4 for equal direction-
al sampling intervals. For unequal directional sampling intervals, the average-derivative optimal 9-point scheme
reduces the number of grid points per pseudo-wavelength from 13 to 4. Numerical experiments demonstrate
that the average-derivative optimal 9-point scheme is more accurate than the finite-element 9-point scheme
for the same sampling intervals. By using smaller sampling intervals, the finite-element 9-point scheme can ap-
proach the accuracy of the average-derivative optimal 9-point scheme, but the corresponding computational cost
and storage requirement are much higher.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Using the zero frequency component of the damped wavefield,
Laplace-domain full waveform inversion (FWI) can yield a smooth ve-
locity model which can be used as a starting model for subsequent
frequency-domain full waveform inversion (Shin and Cha, 2008). Be-
cause of its less sensitivity to the lack of low-frequency component,
Laplace-domain FWI has been successfully applied to real data (Ha
et al., 2012; Shin et al., 2010). Forward modeling in Laplace-domain is
an essential part of Laplace-domain FWI. Therefore, it is important to
make comparisons between different Laplace-domain schemes and
provide efficient schemes for Laplace-domain FWI.

Laplace-domain schemes can be directly obtained from frequency-
domain schemes. Frequency-domain schemes for 2D scalar wave equa-
tion include the classical 5-point scheme (Pratt and Worthington,
1990), the optimal 9-point scheme for equal directional sampling inter-
vals (Jo et al., 1996; Operto et al., 2007), the average-derivative optimal
scheme (Chen, 2012), and the directional-derivative method (Chen,
2013). However, the dispersion analysis of Laplace-domain schemes is
different from that of frequency-domain schemes. Shin et al. (2002) de-
veloped a method to perform Laplace-domain numerical dispersion
analysis by expressing Laplace-domain dispersion relation as the square
root of the ratio of numerical eigenvalue to analytical eigenvalue. How-
ever, this dispersion relation depends on damping constant, velocity,
and sampling interval as well as propagation angle. Therefore, it is
difficult to draw a general conclusion and to optimize the scheme.
Based on the skin depth in Laplace-domain acoustic wave equation
(Um et al., 2012), Chen (2014) developed a Laplace-domain method
of numerical dispersion analysis by defining a pseudo-wavelength as
2π times the skin depth. The dispersion relation can be expressed as a
normalized attenuation propagation velocity which depends on the
number of grid points per pseudo-wavelength as well as propagation
angle.

In this paper, we use the method in Chen (2014) to make compari-
sons between two 9-point schemes for 2D Laplace-domain scalar
wave equation. In the next section, we will present the Laplace-
domain average-derivative optimal 9-point scheme and the finite-
element 9-point scheme. This is followed by comparisons between the
two schemes in terms of numerical dispersion analysis. Numerical ex-
amples are then presented to demonstrate the theoretical analysis.
2. Two Laplace-domain 9-point schemes

Consider the two-dimensional (2D) scalar wave equation in Laplace
domain (Shin et al., 2002):

∂2P
∂x2

þ ∂2P
∂z2

− s2

v2
P ¼ 0; ð1Þ

where P is the pressure wavefield, the real number s is the Laplace
damping constant, and v(x, z) is the velocity.
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Fig. 1. Normalized numerical attenuation propagation velocity of the finite-element 9-point scheme (5) and the average-derivative optimal 9-point scheme (2) for different propagation
angles for the case when Δx

Δz ¼ 1.
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Based on the frequency-domain scheme developed in Chen (2012),
one can obtain an average-derivative 9-point scheme for Eq. (1):

Pmþ1;n−2Pm; n þ Pm−1; n

Δx2
þ

ePm; nþ1−2ePm; n þ ePm; n−1

Δz2

− s2

v2m; n
cPm; n þ d Pmþ1; n þ Pm−1; n þ Pm; nþ1 þ Pm; n−1

�h �
þ b Pmþ1; nþ1 þ Pm−1; nþ1 þ Pmþ1; n−1 þ Pm−1; n−1

�� i
¼ 0;

ð2Þ

where

Pmþ j;n ¼ 1−α
2

Pmþ j;nþ1 þ αPmþ j;n þ
1−α
2

Pmþ j;n−1; j ¼ 1;0;−1; ð3Þ

ePm;nþ j ¼
1−β
2

Pmþ1;nþ j þ βPm;nþ j þ
1−β
2

Pm−1;nþ j; j ¼ 1;0;−1: ð4Þ

Here Pm,n≈ P(mΔx, nΔz), vm,n≈ v(mΔx, nΔz),Δx andΔz are sampling
intervals in x- and z-directions, respectively,α,β, c and d areweighted co-
efficients which should be optimized, and b ¼ 1−c−4d

4 (Chen, 2014).
Based on finite-element formulation, Shin et al. (2002) derived the

following Laplace-domain finite-element 9-point scheme:
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ð5Þ
Note that the scheme (5) is a special case of the scheme (2). If one
takes α ¼ β ¼ 2

3, c = 1, and d = 0, then the scheme (2) becomes the
scheme (5).

3. Comparison between two 9-point schemes

Consider an attenuating function in the following form

P k; rð Þ ¼ P0e
−kr

; ð6Þ

where r= sin(θ)x+ cos(θ)z, P0 is the amplitude at r=0, θ is the prop-
agation angle, and k is the pseudo-wavenumber.

Substituting Eq. (6) into Eq. (2) and assuming a constant v, one ob-
tains the discrete dispersion relation

Vnum

v
¼ G

2π

ffiffiffi
A
B

r
; ð7Þ

where

A ¼ 1−αð Þ cosh 2π cos θð Þ
RG

� �
þ α

� �
2 cosh

2π sin θð Þ
G

� �
−2

� �

þR2 1−βð Þ cosh 2π sin θð Þ
G

� �
þ β

� �
2 cosh

2π cos θð Þ
RG

� �
−2

� �
;

B ¼ cþ 2d cosh
2π cos θð Þ

RG

� �
þ cosh

2π sin θð Þ
G

� �� �

þ4b cosh
2π cos θð Þ

RG

� �
cosh

2π sin θð Þ
G

� �
;

whereVnum ¼ s
k is the numerical propagation velocity of attenuation,G ¼

2π
kΔx is the number of grid point per pseudo-wavelength, and R ¼ Δx

Δz. Here,
we only consider the case when Δx≥ Δz. The case when Δx b Δz can be
discussed similarly (Chen, 2014).

For the scheme (5), its discrete dispersion relation is a special case of
Eq. (7) where α ¼ β ¼ 2

3, c = 1, and d = 0.
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Fig. 2. Normalized numerical attenuation propagation velocity of the finite-element 9-point scheme (5) and the average-derivative optimal 9-point scheme (2) for different propagation
angles for the case when Δx

Δz ¼ 2.
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Now we perform dispersion comparisons between the two 9-point
schemes presented in the previous section. Fig. 1 shows normalized nu-
merical attenuation propagation velocity of the finite-element 9-point
scheme (5) and the average-derivative optimal 9-point scheme (2) for
different propagation angles for the case when Δx

Δz ¼ 1. For the finite-
element 9-point scheme (5), the velocity errors increasewith increasing
1
G for all propagation angles. At larger values of 1

G, the errors become very
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Fig. 3. Normalized numerical attenuation propagation velocity of the finite-element 9-point sch
angles for the case when Δx

Δz ¼ 3.
large. Note that the normalized numerical attenuation propagation ve-
locity for propagation angle θ is equal to that for propagation angle
90°–θ. This is consistent with Eq. (7). On the other hand, for the
average-derivative optimal 9-point scheme (2), the velocity errors re-
main small for all values of 1

G and θ. In this case, the optimal coefficients
for the scheme (2) are α= 0.863852,β= 0.863852, c= 0.693994, and
d= 0.076501 (Chen, 2014). From Fig. 1, one can draw a conclusion that
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within the relative error of 1%, thefinite-element 9-point scheme (5) re-
quires 16 grid points per pseudo-wavelength, while the average-
derivative optimal 9-point scheme (2) requires 4 grid points per
pseudo-wavelength for equal directional sampling intervals.

Figs. 2 and 3 show normalized numerical attenuation propagation
velocity of the finite-element 9-point scheme (5) and the average-
derivative optimal 9-point scheme (2) for different propagation angles
for the cases when Δx

Δz ¼ 2, and Δx
Δz ¼ 3, respectively. In these two cases,

the normalized numerical attenuation propagation velocity for propa-
gation angle θ is no longer equal to that for propagation angle 90°–θ.
This is also consistentwith Eq. (7). As for velocity errors, the conclusions
are similar to that of the case when Δx

Δz ¼ 1. The optimal coefficients for
the scheme (2) are α = 0.828891, β = 0.866232, c = 0.693025, and
d = 0.076743 for Δx

Δz ¼ 2 , and α = 0.834753, β = 858629, c =
0.693395, and d = 0.076651 for Δx

Δz ¼ 3, respectively (Chen, 2014).
From Figs. 2 and 3, one can draw a conclusion that within the relative
error of 1%, the finite-element 9-point scheme (5) requires 13 grid
points per pseudo-wavelength, while the average-derivative optimal
9-point scheme (2) requires 4 grid points per pseudo-wavelength for
unequal directional sampling intervals.

For a heterogeneous media, the grid size is usually determined by
using theminimumvelocity. Another choice is to use the average veloc-
ity (Shin et al., 2002).

4. Numerical examples

First, we consider a homogeneous velocity model with a velocity of
2000 m/s. Horizontal and vertical distances are both 10 km (Fig. 4a).
The Laplace damping constant s is taken to be 10π. Accordingly, the
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Fig. 4. (a) Schematic of the homogenous model. (b) Laplace-domain seismograms com-
puted with the analytical formula (8), the finite-element 9-point scheme (5) and the
average-derivative optimal 9-point scheme (2).
pseudo-wavelength is λ = 2000 / (10π / 2π) m = 400 m. According
to the criterion of 4 grid points per smallest pseudo-wavelength, hori-
zontal sampling interval is determined byΔx=400 / 4m=100m.Ver-
tical sampling interval is taken as Δz = Δx/2 = 50 m. Horizontal and
vertical samplings are nx = 101 and nz = 201, respectively. A Ricker
wavelet is placed at the center of the model as a source, and a receiver
array is placed at a depth of 2.5 km. For the analytical solution, the fol-
lowing formula is used (Alford et al., 1974):

P x; z; sð Þ ¼ iπH 2ð Þ
0

−is
v

d
� �

F sð Þ; ð8Þ

where i is the imaginary unit, H0
(2) is the second Hankel function of

order zero, F(s) is the Laplace transform of the Ricker wavelet, and

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 þ z−z0ð Þ2

q
. Here (x0, z0) is the source position.

Fig. 4b shows the Laplace-domain seismograms computed with the
analytical formula (8), the finite-element 9-point scheme (5) and the
average-derivative optimal 9-point scheme (2). The simulation result
with the average-derivative optimal 9-point scheme (2) is in good
agreement with the analytical result. The result with the finite-
element 9-point scheme (5) exhibits errors which become larger as
the offset increases.

Second, we consider a heterogeneous model. Fig. 5a shows a salt
model which is a two-dimensional section of the SEG/EAGE salt
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Fig. 5. (a) The salt model. (b) Laplace-domain seismograms computed with the finite-
element 9-point scheme (5) with Δx= 40m and Δz= 20m, the average-derivative op-
timal 9-point scheme (2) with Δx= 40m and Δz= 20m and the finite-element 9-point
scheme (5) with Δx= 20 m and Δz = 10 m.
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model. The sampling intervals are Δx=40m and Δz=20m. Horizon-
tal and vertical samplings are nx = 251 and nz = 201, respectively. A
Ricker wavelet is placed at (x=5 km, z=2 km) as a source, and the re-
ceivers are set at the depth of 20 mwith a spacing of 40 m. The Laplace
damping constant s is taken to be 10π. Fig. 5b shows the Laplace-
domain seismograms computed with the finite-element 9-point
scheme (5) and the average-derivative optimal 9-point scheme (2).
Since the analytical solution is not available in this case, we also show
the result computed with the finite-element 9-point scheme (5) with
smaller Δx and Δz for comparison. One can see that the result of the
finite-element 9-point scheme (5) with Δx = 20 m and Δz = 10 m is
closer to the result of the average-derivative optimal 9-point scheme
(2) with Δx = 40 m and Δz= 20m. This demonstrates the greater ac-
curacy of the average-derivative optimal 9-point scheme (2) for this salt
model. It should be noted that the computational cost and storage re-
quirement are much higher when using smaller spacings. In terms of
this salt model, when using smaller spacings, the storage requirement
is 8 times higher and the computational cost is 5 times higher.

5. Conclusions

Based on dispersion analysis and numerical experiments, an
average-derivative optimal 9-point scheme and a finite-element 9-
point scheme are compared. The finite-element 9-point scheme re-
quires 16 grid points per pseudo-wavelength for equal directional sam-
pling intervals and 13 grid points per pseudo-wavelength for unequal
directional sampling intervals. In contrast, the average-derivative opti-
mal 9-point scheme requires 4 grid points per pseudo-wavelength for
both equal and unequal directional sampling intervals. The numerical
example for a homogeneous model demonstrates that the average-
derivative optimal 9-point scheme is more accurate than the finite-
element 9-point scheme when using the same sampling intervals. The
numerical example for the salt model shows that the finite-element 9-
point scheme can approach the accuracy of the average-derivative opti-
mal 9-point scheme by using smaller sampling intervals atmuch higher
cost of CPU time and storage requirement.
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