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Finite-difference depth migration based on one-way wave equation uses second-order, fourth-order, or other
finite-order approximations for spatial derivatives. These finite-order approximations often lead to spatial
dispersion errors and low accuracy. To avoid these errors, smaller mesh spacings are used, which results in
huge increase in computation cost. In this paper, we develop a new spectral differentiation matrix method
for approximating spatial derivatives. The approximation of spectral differentiation matrix is of infinite-
order, and therefore avoids dispersion errors and increases accuracy by using a smaller number of grid points.
Recently-developed GPU computational technology is well suited to the seismic migration based on
frequency-domain wavefield-continuation methods because such approaches can be sufficiently decoupled.
We present a frequency-domain wavefield-continuation algorithm based on spectral differentiation matrix,
and realize GPU implementation of this new algorithm on Marmousi model.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Migration is the most widely used seismic imaging method. Mi-
gration methods can be classified into two categories: integral
methods and wavefield-continuation methods (Biondi, 2006). The
wavefield-continuation method consists of two steps: wavefield con-
tinuation and construction of the subsurface structure by using imag-
ing conditions. The migration methods differ in their approach to
wavefield continuation (Claerbout, 1985; Gazdag and Sguazzero,
1984).

Finite-difference wavefield-continuation is an important method
because it can naturally account for both vertical and lateral velocity
variations. Usually, finite-order finite-difference approximation is
used to evaluate the spatial derivatives. These finite-order approxi-
mations often produce numerical dispersions and have limited accu-
racy. To reduce these numerical dispersions and increase accuracy,
sufficiently small spatial samplings are needed, which significantly
increases computational cost.

Spectral differentiation matrix method is an infinite-order approx-
imation to the spatial derivatives (Chen, 2006; Chen and Liu, 2008;
Fornberg, 1987). This method avoids numerical dispersion, and there-
fore relatively large spatial samplings can be used to reduce computa-
tional cost while maintaining high accuracy. The idea of this method
was mentioned in (Chen et al., 2007), but was not discussed in detail.
In this paper, we will explore this method more thoroughly.

In recent years, GPU computation based on CUDA programming
has become a very promising computing technology. Due to its

inborn feature of parallel computing, GPU computation has great ad-
vantages over traditional parallel computing based on PC-clusters.
Frequency-domain prestack depth migration methods based on
one-way equations are well suited to GPU computation because of
the shot and frequency decoupling properties possessed by these
methods. Therefore, we can use GPU implementation to speed up
the computation of the depth migration method based on spectral
differentiation matrix.

2. One-way wave equation and its discretizations based on spec-
tral differentiation matrix

Consider the acoustic one-way wave equation in frequency-
wavenumber domain

∂u
∂z ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

c2
−k2x

s
u; ð1Þ

where ω is the circular frequency, kx is the wavenumber in the x-
direction, i is the unit of imaginary numbers, and c(x, z) is the velocity.

Expanding the square root in Eq. (1) by second-order continued
fraction and transforming into space domain, we obtain the 45-
degree equation
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where �u ¼ exp i ωc Δz
� �

u. For details, see (Gazdag and Sguazzero, 1984;
Lee and Suh, 1985).
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Let ūj, l denote discrete values of the wavefield at grid points (jΔx,
lΔz), i.e., ūj, l=ū(jΔx, lΔz), j=0, 1, 2, …, nx ; l=0, 1, 2, …, nz. Here Δx
and Δz are grid spacings, and nx and nz are the numbers of sampling
along the x- and z-directions, respectively.

If we approximate the derivatives by the following second-order
finite-difference methods:

∂�uj;lþ1=2

∂z ≈
�uj;lþ1−�uj;l

Δz
; ð3Þ

∂2�uj;l

∂x2
≈

�uj−1;l−2�uj;l þ �ujþ1;l

Δx2
; ð4Þ

then we obtain finite-difference discretization of Eq. (2)

�uj;lþ1 þ α−iβð Þ �uj−1;lþ1−2�uj;lþ1 þ �ujþ1;lþ1

� �

¼ �uj;l þ α þ iβð Þ �uj−1;l−2�uj;l þ �ujþ1;l

� �
; ð5Þ

where α ¼ c
2ωΔx

� �2 and β ¼ cΔz
4ωΔx2

.
The second-order finite-difference approximation in Eq. (5) usual-

ly results in dispersion errors. To reduce the dispersion errors, we can
use smaller Δx, but this approach greatly increases the computational
cost. Another approach to reducing dispersion errors is to use high-
order approximations.

Note that the second-order approximation in Eq. (5) correspond-
ing to a finite-difference matrix:

1
Δx2

−2 1 0 ⋯ 0 1
1 −2 1 ⋯ 0 0
0 1 −2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ −2 1
1 0 0 ⋯ 1 −2

0
BBBBBB@

1
CCCCCCA
: ð6Þ

The second-order approximation in Eq. (5) can also be replaced by
the following fourth-order approximation

∂2�uj;l

∂x2
≈

−�uj−2;l þ 16�uj−1;l−30�uj;l þ 16�ujþ1;l−�ujþ2;l

Δx2
: ð7Þ

The fourth-order finite-difference approximation Eq. (7) corre-
sponds to the following finite-difference matrix:

1
12Δx2

−30 16 −1 0 0 ⋯ 0 −1 16
16 −30 16 −1 0 ⋯ 0 0 −1
−1 16 −30 16 −1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮

−1 0 0 0 0 ⋯ 16 −30 16
16 −1 0 0 0 ⋯ −1 16 −30

0
BBBBBB@

1
CCCCCCA
: ð8Þ

We can continue to use higher finite-difference approximations
and obtain the corresponding finite-difference matrices. But such
finite-difference approximations only have finite-order of accuracy.

Now we present an infinite-order approximation by using the
spectral differentiation matrix Dsm={dp, q} (p, q=1, 2, …, nx) which
is defined by

dp;q ¼
1
2

2π
nxΔx

	 
2
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sin2 π p−qð Þ=nxð Þ ; p≠q;

− 2π
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6

; p ¼ q:

8>>><
>>>:
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The spectral differentiation matrix is derived from trigonometric
interpolation and exact calculation of derivatives, and possesses an
accuracy of infinite order (Chen, 2006; Chen and Qin, 2001; Gottlieb
et al., 1984). Fornberg (1987) proved that the spectral differentiation

matrix can be regarded as a limit of finite-difference approximations
of derivatives as the order of accuracy tends to infinity. Therefore, in
terms of accuracy, the spectral differentiation matrix approximation
is the best choice. In terms of computational efficiency, second-
order finite-difference approximation is the fastest because the
resulting equation can be resolved by an efficient tri-diagonal solver.
Since the spectral differentiation matrix is a full matrix, an algorithm
based on LU decomposition is needed, which increases the computa-
tional cost. Fortunately, an LUGPU algorithm has been developed,
which greatly improves the computational efficiency of LU decompo-
sition by using GPU (Galoppo et al., 2005).

The spectral differentiation matrix corresponds to the following
approximation to the second-order spatial derivative

∂2�uj;l

∂x2
≈ Dsm�ulð Þj; ð10Þ

where ūl=[ū1, l, …, ūnx, l]
T.

Based on Eq. (10), we obtain spectral-differentiation-matrix dis-
cretization of Eq. (2)

�uj;lþ1 þ �α−i�β
� �

Dsm�ulþ1
� �

j ¼ �uj;l þ �α þ i�β
� �

Dsm�ulð Þj; ð11Þ

where �α ¼ c
2ω

� �2 and �β ¼ cΔz
4ω .

To obtain higher-degree equation, we can compose 45-degree
equation with different coefficients. Using an optimization technique,
Lee and Suh (1985) derived the coefficients up to 90-degree.

The 90-degree equation has the following form

∂u
∂z ¼ i

ω
c

1þ
X4
r¼1

arS
1þ brS

 !
u; ð12Þ

where S ¼ − c2k2x
ω2 and a1=0.000523275, b1=0.994065088,

a2=0.014853510, b2=0.919432661, a3=0.117592008,
b3=0.614520676, a4=0.367013245, b4=0.105756624.

Correspondingly, we can solve Eq. (12) by a splitting method.
Eq. (12) can be decomposed into two successive equations:

∂u
∂z ¼ i

ω
c
u; ð13Þ
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Replacing ikx by ∂
∂x, Eq. (14) can be expressed in frequency-space

domain as four successive equations:

1þ brv
2

ω2

∂2

∂x2

" #
∂
∂z

�u ¼ iarc
ω

∂2

∂x2
�u; r ¼ 1;2;3;4: ð15Þ

Based on Eq. (10), we obtain spectral-differentiation-matrix dis-
cretization of Eq. (14)

�uj;lþ1 þ αr−iβrð Þ Dsm�ulþ1
� �

j ¼ �uj;l þ αr þ iβrð Þ Dsm�ulð Þj; ð16Þ

where r=1, 2, 3, 4, and αr ¼ brc
2

ω2 and βr ¼ arcΔz
2ω .

3. Numerical experiments

In this section, we compute the impulse responses for the two
schemes (5) and (11), and make a comparison between them. We
consider a medium with v=2500 m/s. The spacings are taken as
Δx=40 m and Δz=20 m, and the numbers of horizontal and vertical
sampling are nx=128 and nz=128, respectively. A Ricker wavelet of
peak frequency 25 Hz is placed at (0m, 0m).
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Plots (a) and (b) in Fig. 1 show the impulse responses of Eqs. (5)
and (11), respectively. For this large Δx of 40 m, the result of
second-order finite-difference approximation to x-derivative shows
severe dispersions, while the result of the spectral differentiation ma-
trix approximation exhibits no dispersion within the propagation
angle of 45°. However, the computation time of Eq. (11) is longer
than that of Eq. (5). To achieve the effect of Eq. (11) by using Eq.
(5), we have to use a much smaller sampling interval Δx, which
leads to a greatly increased number of sampling. Plot (c) shows the
impulse response of Eq. (5) with Δx=10 m and nx=512, and the re-
sult is better than that of Eq. (5) with Δx=40 m and nx=128, but the
computation time is greatly increased, which is also much longer than
that of Eq. (11) with Δx=40 m and nx=128. The computation pa-
rameters for plots in Fig. 1 are summarized in Table 1.

4. GPU implementation

In this section, we apply scheme (16) to Marmousi model based
on GPU. Fig. 2(a) shows the Marmousi model.

GPU (Graphic Processing Unit) computation is a recently-
developed computational technology based on CUDA programming
(NVIDIA, 2008). CUDA provides a directionbbbDg,Db>>>to achieve
parallel computation of a user-written kernel, where Dg determines
the number of thread blocks N(Dg)and Db determines the number
of threads of each block N(Db).

GPU computation is well suited to the seismic migration based on
frequency domain wavefield-continuation methods because such ap-
proaches can be sufficiently decoupled.

First, we consider shot-decoupling. The synthetic data for Mar-
mousi model consists of independent 240 shots. Therefore, the task
is decoupled into 240 independent sub-tasks.

Second, we further consider frequency-decoupling. For each shot,
the computation consists of M frequencies. Therefore, each shot is
further decoupled into M independent sub-tasks.

In summary, the task of imagingMarmousimodel using Eq. (16) can
be decoupled into 240×N completely independent sub-tasks (threads).

To achieve GPU implementation of our migration scheme (16), we
write a program Spectral-Diff-Matrix-Migration (parame-

ters) to compute Eq. (16) for each shot data and each frequency,
and this program is called a kernel.

Then the following direction can achieve GPU implementation:

intmainðÞ
Spectral−Diff−Matrix−MigrationbbbDg;Db >>> parametersð Þf g

Here N(Dg)=240 and N(Db)=M. The above direction will run the
kernel

Spectral−Diff−Matrix−Migration parametersð Þ

240×M times in a parallel way, in which each thread block com-
putes one shot data and each tread of the block computes one
frequency.

Fig. 2(b) shows the migration result of Eq. (16) on Marmousi
model based on GPU implementation. The migration result is satisfac-
tory, and the faults, anticlines, and high-velocity salt body are both
clearly imaged. Our GPU implementation is carried out on NVIDIA
Tesla C 1060. Because of memory limitation, we only use frequency
parallelism. Compared to CPU with peak frequency 2.5 G, Tesla C
1060 can achieve an improvement of computational efficiency by a
factor of 30 times.

Fig. 1. Impulse responses of schemes (5) and (11). (a) Scheme (5) with Δx=40 m and nx=128. (b) Scheme (11) with Δx=40 m and nx=128. (c) Scheme (5) with Δx=10 m and
nx=512.

Table 1
Computation parameters for plots in Fig. 1.

Plots in Fig. 1 a b c

Schemes Eq. (5) Eq. (11) Eq. (5)

Sampling interval Δx=40 m Δx=40 m Δx=10 m
Number of sampling nx=128 nx=128 nx=512
Computation time T=10.8 s T=81.2 s T=194.3 s
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5. Discussions on 3D implementation

With respect to 3D implementation of finite-difference migration,
there are two choices. One choice is to solve the 3D equation directly.
However, this choice leads to prohibitively high computational cost
(Claerbout, 1985). The second choice is to use a directional-splitting
strategy. Instead of solving the 3D equation directly, this method
solves two or more 2D equations and uses some kind of correction

technique to compensate for the directional-splitting errors (Li,
1991).

We use the second choice to implement 3D spectral differentia-
tion matrix migration based on GPU. To this aim, our work consists
of two steps. First, we implement 3D second-order finite-difference
migration based on GPU. Second, we try to incorporate the result in
the first step into LUGPU (Galoppo et al., 2005) and develop an effi-
cient algorithm to implement 3D spectral differentiation matrix mi-
gration based on GPU. At present, we have finished the task in the
first step. Implementation of 3D second-order finite-difference migra-
tion based on GPU has been carried out on SEG/EAGE slat model.
Fig. 3 shows two crossline sections. The work in the second step is
currently underway. We feel that the key is how to make a combina-
tion of migration-GPU and LUGPU. A lot of work remains to be done in
this regard.

6. Conclusions

In this paper, we develop a new migration method based on spec-
tral differentiation matrix. This method suffers no dispersion errors
resulting from the approximation of horizontal spatial derivatives,
and therefore, large horizontal spatial intervals can be used. This
method with large horizontal spatial interval is more efficient than
the second-order finite-difference approximation with a much smal-
ler horizontal spatial interval. We also achieve GPU implementation
of this new migration method based on NVIDIA Tesla C 1060 GPU
on Marmousi model, and this implementation realizes a 30 times of
improvement of computational efficiency in comparison with CPU
with a peak frequency of 2.5G.
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Fig. 2. (a) Marmousi model. (b) Migration result of scheme (16).
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Fig. 3. Migration results of 3D salt model for inline 300 (left) and inline 400 (right).
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